Deep Activation Feature Maps for Visual Object Tracking

Yang Li, Zhuang Miao, Jiabao Wang
{"title":"Deep Activation Feature Maps for Visual Object Tracking","authors":"Yang Li, Zhuang Miao, Jiabao Wang","doi":"10.1145/3297067.3297088","DOIUrl":null,"url":null,"abstract":"Video object tracking is an important task with a broad range of applications. In this paper, we propose a novel visual tracking algorithm based on deep activation feature maps in correlation filter framework. Deep activation feature maps are generated from convolution neural network feature maps, which can discover the important part of the tracking target and overcome shape deformation and heavy occlusion. In addition, the scale variation is calculated by another correlation filter with histogram of oriented gradient (HoG) features. Moreover, we integrate the final tracking result in each frame based on the appearance model and scale model to further boost the overall tracking performance. We validate the effectiveness of our approach on a challenging benchmark, where the proposed method illustrates outstanding performance compared with the state-ofthe-art tracking algorithms","PeriodicalId":340004,"journal":{"name":"International Conference on Signal Processing and Machine Learning","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3297067.3297088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Video object tracking is an important task with a broad range of applications. In this paper, we propose a novel visual tracking algorithm based on deep activation feature maps in correlation filter framework. Deep activation feature maps are generated from convolution neural network feature maps, which can discover the important part of the tracking target and overcome shape deformation and heavy occlusion. In addition, the scale variation is calculated by another correlation filter with histogram of oriented gradient (HoG) features. Moreover, we integrate the final tracking result in each frame based on the appearance model and scale model to further boost the overall tracking performance. We validate the effectiveness of our approach on a challenging benchmark, where the proposed method illustrates outstanding performance compared with the state-ofthe-art tracking algorithms
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于视觉对象跟踪的深度激活特征映射
视频目标跟踪是一项具有广泛应用前景的重要任务。本文提出了一种基于相关滤波框架下深度激活特征映射的视觉跟踪算法。深度激活特征映射是由卷积神经网络特征映射生成的,它可以发现跟踪目标的重要部分,克服形状变形和严重遮挡。此外,通过另一个具有定向梯度直方图(HoG)特征的相关滤波器计算尺度变化。此外,我们基于外观模型和比例模型将最终跟踪结果整合到每一帧中,进一步提高整体跟踪性能。我们在一个具有挑战性的基准上验证了我们方法的有效性,其中所提出的方法与最先进的跟踪算法相比表现出出色的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-source Radar Data Fusion via Support Vector Regression Data Link Modeling and Simulation Based on DEVS Implement AI Service into VR Training Automated Detection of Sewer Pipe Defects Based on Cost-Sensitive Convolutional Neural Network Multi-Scale Deep Convolutional Nets with Attention Model and Conditional Random Fields for Semantic Image Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1