An analytical approach for fast and accurate design space exploration of instruction caches

Yun Liang, T. Mitra
{"title":"An analytical approach for fast and accurate design space exploration of instruction caches","authors":"Yun Liang, T. Mitra","doi":"10.1145/2539036.2539039","DOIUrl":null,"url":null,"abstract":"Application-specific system-on-chip platforms create the opportunity to customize the cache configuration for optimal performance with minimal chip area. Simulation, in particular trace-driven simulation, is widely used to estimate cache hit rates. However, simulation is too slow to be deployed in design space exploration, especially when there are hundreds of design points and the traces are huge. In this article, we propose a novel analytical approach for design space exploration of instruction caches. Given the program control flow graph (CFG) annotated only with basic block and control flow edge execution counts, we first model the cache states at each point of the CFG in a probabilistic manner. Then, we exploit the structural similarities among related cache configurations to estimate the cache hit rates for multiple cache configurations in one pass. Experimental results indicate that our analysis is 28--2,500 times faster compared to the fastest known cache simulator while maintaining high accuracy (0.2% average error) in estimating cache hit rates for a large set of popular benchmarks. Moreover, compared to a state-of-the-art cache design space exploration technique, our approach achieves 304--8,086 times speedup and saves up to 62% (average 7%) energy for the evaluated benchmarks.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2539036.2539039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Application-specific system-on-chip platforms create the opportunity to customize the cache configuration for optimal performance with minimal chip area. Simulation, in particular trace-driven simulation, is widely used to estimate cache hit rates. However, simulation is too slow to be deployed in design space exploration, especially when there are hundreds of design points and the traces are huge. In this article, we propose a novel analytical approach for design space exploration of instruction caches. Given the program control flow graph (CFG) annotated only with basic block and control flow edge execution counts, we first model the cache states at each point of the CFG in a probabilistic manner. Then, we exploit the structural similarities among related cache configurations to estimate the cache hit rates for multiple cache configurations in one pass. Experimental results indicate that our analysis is 28--2,500 times faster compared to the fastest known cache simulator while maintaining high accuracy (0.2% average error) in estimating cache hit rates for a large set of popular benchmarks. Moreover, compared to a state-of-the-art cache design space exploration technique, our approach achieves 304--8,086 times speedup and saves up to 62% (average 7%) energy for the evaluated benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种快速准确地探索指令缓存设计空间的分析方法
特定于应用程序的片上系统平台创造了定制缓存配置的机会,以最小的芯片面积实现最佳性能。仿真,特别是跟踪驱动仿真,被广泛用于估计缓存命中率。然而,在设计空间探索中,特别是当有数百个设计点和巨大的轨迹时,仿真速度太慢。在本文中,我们提出了一种新的分析方法来探索指令缓存的设计空间。给定仅标注基本块和控制流边缘执行计数的程序控制流图(CFG),我们首先以概率方式对CFG每个点的缓存状态进行建模。然后,我们利用相关缓存配置之间的结构相似性来估计一次遍历多个缓存配置的缓存命中率。实验结果表明,我们的分析比已知最快的缓存模拟器快28- 2500倍,同时在估计大量流行基准的缓存命中率时保持高精度(平均误差0.2%)。此外,与最先进的缓存设计空间探索技术相比,我们的方法实现了304- 8086倍的加速,并为评估基准节省高达62%(平均7%)的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration for Embedded Keyword Spotting: Tutorial and Survey Adaptive Computation Reuse for Energy-Efficient Training of Deep Neural Networks Horizontal Auto-Scaling for Multi-Access Edge Computing Using Safe Reinforcement Learning IoT-Fog-Cloud Centric Earthquake Monitoring and Prediction Horizontal Side-Channel Vulnerabilities of Post-Quantum Key Exchange and Encapsulation Protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1