Prediction model of human body composition based on physiological information entropy

Bo Chen, Xiu-e Gao, A. Zhang
{"title":"Prediction model of human body composition based on physiological information entropy","authors":"Bo Chen, Xiu-e Gao, A. Zhang","doi":"10.1109/BMEI.2015.7401555","DOIUrl":null,"url":null,"abstract":"Body composition analysis can not only reflect the state of health, but also can play a role in disease prevention. Aiming at many influencing factors, complex modeling issues of the existing bioelectrical impedance analysis algorithms, this paper draws information entropy theory into modeling the human body composition for the first time, establishes entropy evaluation criteria of physiological characteristic parameters, puts forward feature selection algorithm based on physiological information entropy, selects a reasonable subset of features that can most effectively interpret body physiological information and have a minimal number of features to give the body composition prediction fitted model. Experimental results show that the algorithm can select the useful characteristic parameters and the fitted model improves the accuracy of body composition prediction.","PeriodicalId":119361,"journal":{"name":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2015.7401555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Body composition analysis can not only reflect the state of health, but also can play a role in disease prevention. Aiming at many influencing factors, complex modeling issues of the existing bioelectrical impedance analysis algorithms, this paper draws information entropy theory into modeling the human body composition for the first time, establishes entropy evaluation criteria of physiological characteristic parameters, puts forward feature selection algorithm based on physiological information entropy, selects a reasonable subset of features that can most effectively interpret body physiological information and have a minimal number of features to give the body composition prediction fitted model. Experimental results show that the algorithm can select the useful characteristic parameters and the fitted model improves the accuracy of body composition prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生理信息熵的人体成分预测模型
身体成分分析不仅能反映健康状况,还能起到预防疾病的作用。针对现有生物电阻抗分析算法影响因素多、建模复杂的问题,首次将信息熵理论引入人体成分建模,建立生理特征参数的熵值评价标准,提出基于生理信息熵的特征选择算法。选择最能有效解释身体生理信息的合理特征子集,并具有最少数量的特征来给出身体成分预测拟合模型。实验结果表明,该算法可以选择有用的特征参数,拟合模型提高了人体成分预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECG signal compressed sensing using the wavelet tree model Development of a quantifiable optical reader for lateral flow immunoassay A tightly secure multi-party-signature protocol in the plain model Breast mass detection with kernelized supervised hashing 3D reconstruction of human enamel Ex vivo using high frequency ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1