Zero-dimensional nonlinear burn control using isotopic fuel tailoring for thermal excursions

M. Boyer, E. Schuster
{"title":"Zero-dimensional nonlinear burn control using isotopic fuel tailoring for thermal excursions","authors":"M. Boyer, E. Schuster","doi":"10.1109/CCA.2011.6044431","DOIUrl":null,"url":null,"abstract":"The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. While stable burn conditions exist, it is possible that economic and technological constraints will require future commercial reactors to operate with low temperature, high density plasma, a burn condition that may be unstable. The instability is due to the fact that for low temperatures, the fusion heating increases as the plasma temperature rises. An active control system will be essential for stabilizing such operating points. In this work a spatially averaged (zero-dimensional) nonlinear transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha-particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition of a fusion reactor. Whereas previous efforts assume an optimal 50:50 mix of deuterium and tritium fuel, this controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. Also, unlike previous work which used impurity injection to mitigate thermal excursions, this design exploits the ability to modulate the DT fuel mix to control the plasma heating. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. A zero-dimensional simulation study is presented to show the ability of the controller to bring the system back to the desired equilibrium from a given set of perturbations.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. While stable burn conditions exist, it is possible that economic and technological constraints will require future commercial reactors to operate with low temperature, high density plasma, a burn condition that may be unstable. The instability is due to the fact that for low temperatures, the fusion heating increases as the plasma temperature rises. An active control system will be essential for stabilizing such operating points. In this work a spatially averaged (zero-dimensional) nonlinear transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha-particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition of a fusion reactor. Whereas previous efforts assume an optimal 50:50 mix of deuterium and tritium fuel, this controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. Also, unlike previous work which used impurity injection to mitigate thermal excursions, this design exploits the ability to modulate the DT fuel mix to control the plasma heating. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. A zero-dimensional simulation study is presented to show the ability of the controller to bring the system back to the desired equilibrium from a given set of perturbations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
零维非线性燃烧控制使用同位素燃料剪裁热漂移
等离子体密度和温度的控制是聚变反应堆中最基本的问题之一,对像ITER这样的燃烧等离子体实验的成功至关重要。虽然存在稳定的燃烧条件,但由于经济和技术的限制,未来的商业反应堆可能需要在低温、高密度等离子体下运行,而这种燃烧条件可能不稳定。这种不稳定性是由于在低温下,熔合加热随着等离子体温度的升高而增加。一个主动控制系统对于稳定这些工作点是必不可少的。本文利用空间平均(零维)的氘、氚燃料离子的能量和密度非线性输运模型,以及α粒子,合成了一个用于稳定聚变反应堆燃烧状态的非线性反馈控制器。之前的研究假设氘和氚燃料的最佳比例是50:50,而这个控制器利用了ITER计划中的同位素燃料能力,并分别控制这些离子的密度。此外,与以前使用杂质注入来缓解热漂移的工作不同,该设计利用了调节DT燃料混合的能力来控制等离子体加热。通过将等离子体中的同位素混合物从最佳的50:50混合物中移开,反应速率减慢,α粒子加热降低到所需的水平。提出了一个零维仿真研究,以显示控制器从给定的扰动集使系统恢复到期望的平衡状态的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Suppression of general decoherence in arbitrary n-level atom in Ξ-configuration under a bang-bang control Interval observer for Chlorella vulgaris culture in a photobioreactor Miniaturizing the spherical sundial: A hemispherical sensor for orientation and positioning with respect to point sources of light Robust gain-scheduled control of dc-dc converters: An LMI approach Slip measurement and vehicle control for leg/wheel mobile robots using caster type odometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1