Image compression using a stochastic competitive learning algorithm (SCoLA)

A. Bouzerdoum
{"title":"Image compression using a stochastic competitive learning algorithm (SCoLA)","authors":"A. Bouzerdoum","doi":"10.1109/ISSPA.2001.950200","DOIUrl":null,"url":null,"abstract":"We introduce a new stochastic competitive learning algorithm (SCoLA) and apply it to vector quantization for image compression. In competitive learning, the training process involves presenting, simultaneously, an input vector to each of the competing neurons, which then compare the input vector to their own weight vectors and one of them is declared the winner based on some deterministic distortion measure. Here a stochastic criterion is used for selecting the winning neuron, whose weights are then updated to become more like the input vector. The performance of the new algorithm is compared to that of frequency-sensitive competitive learning (FSCL); it was found that SCoLA achieves higher peak signal-to-noise ratios (PSNR) than FSCL.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.950200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a new stochastic competitive learning algorithm (SCoLA) and apply it to vector quantization for image compression. In competitive learning, the training process involves presenting, simultaneously, an input vector to each of the competing neurons, which then compare the input vector to their own weight vectors and one of them is declared the winner based on some deterministic distortion measure. Here a stochastic criterion is used for selecting the winning neuron, whose weights are then updated to become more like the input vector. The performance of the new algorithm is compared to that of frequency-sensitive competitive learning (FSCL); it was found that SCoLA achieves higher peak signal-to-noise ratios (PSNR) than FSCL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机竞争学习算法的图像压缩
提出了一种新的随机竞争学习算法(SCoLA),并将其应用于图像压缩的矢量量化。在竞争学习中,训练过程包括同时向每个竞争神经元提供一个输入向量,然后将输入向量与它们自己的权重向量进行比较,并根据一些确定性失真度量宣布其中一个为获胜者。这里使用随机标准来选择获胜的神经元,然后将其权重更新为更像输入向量。将新算法的性能与频率敏感竞争学习(FSCL)进行了比较;结果表明,与FSCL相比,SCoLA具有更高的峰值信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large dynamic range time-frequency signal analysis with application to helicopter Doppler radar data Statistical analysis of neural network modeling and identification of nonlinear systems with memory Design of oversampled uniform DFT filter banks with reduced inband aliasing and delay constraints Identification of DCT signs for sub-block coding Skin color detection for face localization in human-machine communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1