Process optimization and mechanical property investigation of Inconel 718 manufactured by selective electron beam melting

Heng Dong, Feng Liu, Lin Ye, Xiaoqiong Ouyang, Qiang Wang, Li Wang, Lan Huang, Liming Tan, X. Jin, Y. Liu
{"title":"Process optimization and mechanical property investigation of Inconel 718 manufactured by selective electron beam melting","authors":"Heng Dong, Feng Liu, Lin Ye, Xiaoqiong Ouyang, Qiang Wang, Li Wang, Lan Huang, Liming Tan, X. Jin, Y. Liu","doi":"10.18063/msam.v1i4.23","DOIUrl":null,"url":null,"abstract":"To accelerate the optimization of selective electron-beam melting (SEBM) processing parameters, two machine learning models, Gaussian process regression, and support vector regression were applied in this work to predict the relative density of Inconel 718 from experimental data. The experimental validation indicated that the trained algorithms can precisely predict the relative density of SEBM samples. Moreover, the effects of different parameters on surface integrity, internal defects, and mechanical properties are discussed in this paper. The Inconel 718 samples with high density (>99.5%) prepared by the same SEBM energy density exhibit different mechanical properties, which are related to the existence of the unmelted powder, Laves phase, and grain structure. Finally, Inconel 718 sample with superior strength and plasticity was fabricated using the optimized processing parameters.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18063/msam.v1i4.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To accelerate the optimization of selective electron-beam melting (SEBM) processing parameters, two machine learning models, Gaussian process regression, and support vector regression were applied in this work to predict the relative density of Inconel 718 from experimental data. The experimental validation indicated that the trained algorithms can precisely predict the relative density of SEBM samples. Moreover, the effects of different parameters on surface integrity, internal defects, and mechanical properties are discussed in this paper. The Inconel 718 samples with high density (>99.5%) prepared by the same SEBM energy density exhibit different mechanical properties, which are related to the existence of the unmelted powder, Laves phase, and grain structure. Finally, Inconel 718 sample with superior strength and plasticity was fabricated using the optimized processing parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择性电子束熔炼Inconel 718的工艺优化及力学性能研究
为了加速选择性电子束熔化(SEBM)工艺参数的优化,采用高斯过程回归和支持向量回归两种机器学习模型,从实验数据中预测Inconel 718的相对密度。实验验证表明,所训练的算法能够准确地预测SEBM样本的相对密度。此外,本文还讨论了不同参数对表面完整性、内部缺陷和力学性能的影响。相同SEBM能量密度制备的高密度(>99.5%)Inconel 718样品表现出不同的力学性能,这与未熔粉末、Laves相和晶粒组织的存在有关。最后,利用优化后的工艺参数制备出了具有良好强度和塑性的Inconel 718样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-material structures of Ti6Al4V and Ti6Al4V-B4C through directed energy deposition-based additive manufacturing Current materials for 3D-printed flexible medical electrodes An experimental study on 3D-printed continuous fiber-reinforced composite auxetic structures Metal additive manufacturing of orthopedic bone plates: An overview An exploratory study on biocompatible Ti-6Mn-4Mo alloy manufactured by directed energy deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1