Modified fuzzy model identification clustering algorithm for liquid level process

M. Soltani, A. Chaari, F. Ben Hmida, M. Gossa
{"title":"Modified fuzzy model identification clustering algorithm for liquid level process","authors":"M. Soltani, A. Chaari, F. Ben Hmida, M. Gossa","doi":"10.1109/MED.2010.5547638","DOIUrl":null,"url":null,"abstract":"In this paper the problem of nonlinear system identification is investigated from a new point of view. If the nonlinear system is affected by measurement noise and if the noise cluster is arbitrarily far away, then there is no way to guarantee that any clustering algorithm will select the best cluster instead of the bad one. The proposed methodology is based to adding a noise cluster to clustering algorithm. The proposed approach allows the identification of the premise parameters and the consequence parameters together via iterative minimization using four criteria. This new technique is demonstrated by means of the identification of liquid level process.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper the problem of nonlinear system identification is investigated from a new point of view. If the nonlinear system is affected by measurement noise and if the noise cluster is arbitrarily far away, then there is no way to guarantee that any clustering algorithm will select the best cluster instead of the bad one. The proposed methodology is based to adding a noise cluster to clustering algorithm. The proposed approach allows the identification of the premise parameters and the consequence parameters together via iterative minimization using four criteria. This new technique is demonstrated by means of the identification of liquid level process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液位过程的改进模糊模型识别聚类算法
本文从一个新的角度研究了非线性系统辨识问题。如果非线性系统受到测量噪声的影响,并且噪声聚类的距离是任意远的,那么任何聚类算法都无法保证选择最佳聚类而不是最差聚类。该方法基于在聚类算法中加入噪声聚类。提出的方法允许通过使用四个准则的迭代最小化来识别前提参数和结果参数。通过对液位过程的辨识,对该新技术进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy crash avoidance and coordination between multi mobile robots A co-design approach for bilateral teleoperation over hybrid network Self-Scheduled Fuzzy Control of PWM DC-DC Converters An inverse optimality method to solve a class of second order optimal control problems Support Vector Regression for soft sensor design of nonlinear processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1