MCR-DL: Mix-and-Match Communication Runtime for Deep Learning

Quentin G. Anthony, A. Awan, Jeff Rasley, Yuxiong He, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda
{"title":"MCR-DL: Mix-and-Match Communication Runtime for Deep Learning","authors":"Quentin G. Anthony, A. Awan, Jeff Rasley, Yuxiong He, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda","doi":"10.1109/IPDPS54959.2023.00103","DOIUrl":null,"url":null,"abstract":"In recent years, the training requirements of many state-of-the-art Deep Learning (DL) models have scaled beyond the compute and memory capabilities of a single processor, and necessitated distribution among processors. Training such massive models necessitates advanced parallelism strategies [1], [2] to maintain efficiency. However, such distributed DL parallelism strategies require a varied mixture of collective and point-to-point communication operations across a broad range of message sizes and scales. Examples of models using advanced parallelism strategies include Deep Learning Recommendation Models (DLRM) [3] and Mixture-of-Experts (MoE) [4], [5]. Communication libraries’ performance varies wildly across different communication operations, scales, and message sizes. We propose MCR-DL: an extensible DL communication framework that supports all point-to-point and collective operations while enabling users to dynamically mix-and-match communication backends for a given operation without deadlocks. MCR-DL also comes packaged with a tuning suite for dynamically selecting the best communication backend for a given input tensor. We select DeepSpeed-MoE and DLRM as candidate DL models and demonstrate a 31% improvement in DS-MoE throughput on 256 V100 GPUs on the Lassen HPC system. Further, we achieve a 20% throughput improvement in a dense Megatron-DeepSpeed model and a 25% throughput improvement in DLRM on 32 A100 GPUs with the Theta-GPU HPC system.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, the training requirements of many state-of-the-art Deep Learning (DL) models have scaled beyond the compute and memory capabilities of a single processor, and necessitated distribution among processors. Training such massive models necessitates advanced parallelism strategies [1], [2] to maintain efficiency. However, such distributed DL parallelism strategies require a varied mixture of collective and point-to-point communication operations across a broad range of message sizes and scales. Examples of models using advanced parallelism strategies include Deep Learning Recommendation Models (DLRM) [3] and Mixture-of-Experts (MoE) [4], [5]. Communication libraries’ performance varies wildly across different communication operations, scales, and message sizes. We propose MCR-DL: an extensible DL communication framework that supports all point-to-point and collective operations while enabling users to dynamically mix-and-match communication backends for a given operation without deadlocks. MCR-DL also comes packaged with a tuning suite for dynamically selecting the best communication backend for a given input tensor. We select DeepSpeed-MoE and DLRM as candidate DL models and demonstrate a 31% improvement in DS-MoE throughput on 256 V100 GPUs on the Lassen HPC system. Further, we achieve a 20% throughput improvement in a dense Megatron-DeepSpeed model and a 25% throughput improvement in DLRM on 32 A100 GPUs with the Theta-GPU HPC system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MCR-DL:用于深度学习的混合匹配通信运行时
近年来,许多最先进的深度学习(DL)模型的训练需求已经超出了单个处理器的计算和内存能力,并且需要在处理器之间进行分布。训练如此庞大的模型需要先进的并行策略[1],[2]来保持效率。然而,这种分布式DL并行策略需要在广泛的消息大小和规模范围内混合使用集体和点对点通信操作。使用高级并行策略的模型示例包括深度学习推荐模型(DLRM)[3]和专家混合模型(MoE)[4],[5]。通信库的性能在不同的通信操作、规模和消息大小之间差异很大。我们提出MCR-DL:一个可扩展的DL通信框架,支持所有点对点和集体操作,同时使用户能够动态混合和匹配给定操作的通信后端,而不会出现死锁。MCR-DL还附带了一个调优套件,用于动态选择给定输入张量的最佳通信后端。我们选择DeepSpeed-MoE和DLRM作为候选DL模型,并在Lassen HPC系统上的256个V100 gpu上证明了DS-MoE吞吐量提高了31%。此外,我们在密集的Megatron-DeepSpeed模型中实现了20%的吞吐量提升,在32个A100 gpu上使用Theta-GPU HPC系统实现了25%的DLRM吞吐量提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1