Constructing Topic Hierarchies from Social Media Data

Yuhao Zhang, W. Mao, D. Zeng
{"title":"Constructing Topic Hierarchies from Social Media Data","authors":"Yuhao Zhang, W. Mao, D. Zeng","doi":"10.1109/ICDMW.2015.146","DOIUrl":null,"url":null,"abstract":"Constructing topic hierarchies from the data automatically can help us better understand the contents and structure of information and benefit many applications in security informatics. The existing topic hierarchy construction methods either need to specify the structure manually, or are not robust enough for sparse and noisy social media data such as microblog. In this paper, we propose an approach to automatically construct topic hierarchies from microblog data in a bottom up manner. We detect topics first and then build the topic structure based on a tree combination method. We conduct a preliminary empirical study based on the Weibo data. The experimental results show that the topic hierarchies generated by our method provide meaningful results.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Constructing topic hierarchies from the data automatically can help us better understand the contents and structure of information and benefit many applications in security informatics. The existing topic hierarchy construction methods either need to specify the structure manually, or are not robust enough for sparse and noisy social media data such as microblog. In this paper, we propose an approach to automatically construct topic hierarchies from microblog data in a bottom up manner. We detect topics first and then build the topic structure based on a tree combination method. We conduct a preliminary empirical study based on the Weibo data. The experimental results show that the topic hierarchies generated by our method provide meaningful results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从社交媒体数据构建主题层次结构
从数据中自动构造主题层次结构可以帮助我们更好地理解信息的内容和结构,有利于安全信息学中的许多应用。现有的主题层次结构构建方法要么需要手工指定结构,要么对于微博等稀疏、有噪声的社交媒体数据鲁棒性不够。本文提出了一种基于自底向上的微博数据自动构建主题层次结构的方法。我们首先检测主题,然后基于树组合方法构建主题结构。我们基于微博数据进行了初步的实证研究。实验结果表明,该方法生成的主题层次结构提供了有意义的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1