{"title":"Interpretable machine learning with an eye for the physics: Hyperspectral Vis/NIR “video” of drying wood analyzed by hybrid subspace modeling","authors":"H. Martens","doi":"10.1177/09603360211062706","DOIUrl":null,"url":null,"abstract":"Chemometric multivariate analysis based on low-dimensional linear and bilinear data modelling is presented as a fast and interpretable alternative to more fancy “AI” for practical use of Big Data streams from hyperspectral “video” cameras. The purpose of the present illustration is to find, quantify and understand the various known and unknown factors affecting the process of drying moist wood. It involves an “interpretable machine learning” that analyses more than 350 million absorbance spectra, requiring 418 GB of data storage, without the use of black box operations. The 159-channel high-resolution hyperspectral wood “video” in the 500–1005 nm range was reduced to five known and four unknown variation components of physical and chemical nature, each with its spectral, spatial and temporal parameters quantified. Together, this 9-dimensional linear model explained more than 99.98% of the total input variance.","PeriodicalId":113081,"journal":{"name":"NIR News","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NIR News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603360211062706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Chemometric multivariate analysis based on low-dimensional linear and bilinear data modelling is presented as a fast and interpretable alternative to more fancy “AI” for practical use of Big Data streams from hyperspectral “video” cameras. The purpose of the present illustration is to find, quantify and understand the various known and unknown factors affecting the process of drying moist wood. It involves an “interpretable machine learning” that analyses more than 350 million absorbance spectra, requiring 418 GB of data storage, without the use of black box operations. The 159-channel high-resolution hyperspectral wood “video” in the 500–1005 nm range was reduced to five known and four unknown variation components of physical and chemical nature, each with its spectral, spatial and temporal parameters quantified. Together, this 9-dimensional linear model explained more than 99.98% of the total input variance.