Multi-Path and Multi-Loss Network for Person Re-Identification

Jiabao Wang, Shanshan Jiao, Yang Li, Zhuang Miao
{"title":"Multi-Path and Multi-Loss Network for Person Re-Identification","authors":"Jiabao Wang, Shanshan Jiao, Yang Li, Zhuang Miao","doi":"10.1145/3318299.3318331","DOIUrl":null,"url":null,"abstract":"In person re-identification (re-ID), most state-of-the-art models extract features by convolutional neural networks to do similarity comparison. Feature representation becomes the key task for person re-ID. However, the learned features are not good enough based on a single-path and single-loss network because the learned objective only achieves one of the multiple minima. To improve feature representation, we propose a multi-path and multi-loss network (MPMLN) and concatenate multi-path features to represent pedestrian. Subsequently, we design MPMLN based on ResNet-50 and construct an end-to-end architecture. The backbone of our proposed network shares the local parameters for multiple paths and multiple losses. It has fewer parameters than multiple independent networks. Experimental results show that our MPMLN achieves the state-of-the-art performance on the public Market1501, DukeMTMC-reID and CUHK03 person re-ID benchmarks.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In person re-identification (re-ID), most state-of-the-art models extract features by convolutional neural networks to do similarity comparison. Feature representation becomes the key task for person re-ID. However, the learned features are not good enough based on a single-path and single-loss network because the learned objective only achieves one of the multiple minima. To improve feature representation, we propose a multi-path and multi-loss network (MPMLN) and concatenate multi-path features to represent pedestrian. Subsequently, we design MPMLN based on ResNet-50 and construct an end-to-end architecture. The backbone of our proposed network shares the local parameters for multiple paths and multiple losses. It has fewer parameters than multiple independent networks. Experimental results show that our MPMLN achieves the state-of-the-art performance on the public Market1501, DukeMTMC-reID and CUHK03 person re-ID benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多路径多损失的人员再识别网络
在人的再识别(re-ID)中,大多数最先进的模型都是通过卷积神经网络提取特征进行相似性比较。特征表示成为人员身份识别的关键任务。然而,基于单路径单损失网络,学习到的特征不够好,因为学习目标只能达到多个最小值中的一个。为了改进特征表示,我们提出了一种多路径多损失网络(MPMLN),并将多路径特征连接起来表示行人。随后,我们设计了基于ResNet-50的MPMLN,并构建了端到端架构。我们提出的网络的主干共享多个路径和多个损失的本地参数。它具有比多个独立网络更少的参数。实验结果表明,我们的MPMLN在公开市场1501,DukeMTMC-reID和CUHK03人重新id基准上达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Competition for Multilayer Network Community Detection Power Load Forecasting Using a Refined LSTM Research on the Application of Big Data Management in Enterprise Management Decision-making and Execution Literature Review A Flexible Approach for Human Activity Recognition Based on Broad Learning System Decentralized Adaptive Latency-Aware Cloud-Edge-Dew Architecture for Unreliable Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1