Principal appearance and motion from boosted spatiotemporal descriptors

Guoying Zhao, M. Pietikäinen
{"title":"Principal appearance and motion from boosted spatiotemporal descriptors","authors":"Guoying Zhao, M. Pietikäinen","doi":"10.1109/CVPRW.2008.4563174","DOIUrl":null,"url":null,"abstract":"Feature definition and selection are two important aspects in visual analysis of motion. In this paper, spatiotemporal local binary patterns computed at multiple resolutions are proposed for describing dynamic events, combining static and dynamic information from different spatiotemporal resolutions. Appearance and motion are the key components for visual analysis related to movements. AdaBoost algorithm is utilized for learning the principal appearance and motion from spatiotemporal descriptors derived from three orthogonal planes, providing important information about the locations and types of features for further analysis. In addition, learners are designed for selecting the most important features for each specific pair of different classes. The experiments carried out on diverse visual analysis tasks: facial expression recognition and visual speech recognition, show the effectiveness of the approach.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Feature definition and selection are two important aspects in visual analysis of motion. In this paper, spatiotemporal local binary patterns computed at multiple resolutions are proposed for describing dynamic events, combining static and dynamic information from different spatiotemporal resolutions. Appearance and motion are the key components for visual analysis related to movements. AdaBoost algorithm is utilized for learning the principal appearance and motion from spatiotemporal descriptors derived from three orthogonal planes, providing important information about the locations and types of features for further analysis. In addition, learners are designed for selecting the most important features for each specific pair of different classes. The experiments carried out on diverse visual analysis tasks: facial expression recognition and visual speech recognition, show the effectiveness of the approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强时空描述符的主要外观和运动
特征的定义和选择是运动视觉分析的两个重要方面。本文提出了在多分辨率下计算时空局部二元模式,将不同时空分辨率的静态和动态信息相结合,用于描述动态事件。外观和运动是与运动相关的视觉分析的关键组成部分。AdaBoost算法用于从三个正交平面的时空描述符中学习主外观和运动,为进一步分析提供有关特征位置和类型的重要信息。此外,学习者的设计目的是为每个特定的对不同的类选择最重要的特征。在不同的视觉分析任务上进行的实验:面部表情识别和视觉语音识别,表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-fiber reconstruction from DW-MRI using a continuous mixture of von Mises-Fisher distributions New insights into the calibration of ToF-sensors Circular generalized cylinder fitting for 3D reconstruction in endoscopic imaging based on MRF A GPU-based implementation of motion detection from a moving platform Face model fitting based on machine learning from multi-band images of facial components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1