Comparing Concept Drift Detection with Process Mining Tools

Nicolas Jashchenko Omori, G. Tavares, P. Ceravolo, Sylvio Barbon Junior
{"title":"Comparing Concept Drift Detection with Process Mining Tools","authors":"Nicolas Jashchenko Omori, G. Tavares, P. Ceravolo, Sylvio Barbon Junior","doi":"10.1145/3330204.3330240","DOIUrl":null,"url":null,"abstract":"Organisations have seen a rise in the volume of data corresponding to business processes being recorded. Handling process data is a meaningful way to extract relevant information from business processes with impact on the company's values. Nonetheless, business processes are subject to changes during their executions, adding complexity to their analysis. This paper aims at evaluating currently available Process Mining tools that handle concept drifts, i.e. changes over time of the statistical properties of the events occurring in a process. We provide an in-depth analysis of these tools briefly comparing their differences, advantages, and disadvantages.","PeriodicalId":348938,"journal":{"name":"Proceedings of the XV Brazilian Symposium on Information Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the XV Brazilian Symposium on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330204.3330240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Organisations have seen a rise in the volume of data corresponding to business processes being recorded. Handling process data is a meaningful way to extract relevant information from business processes with impact on the company's values. Nonetheless, business processes are subject to changes during their executions, adding complexity to their analysis. This paper aims at evaluating currently available Process Mining tools that handle concept drifts, i.e. changes over time of the statistical properties of the events occurring in a process. We provide an in-depth analysis of these tools briefly comparing their differences, advantages, and disadvantages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概念漂移检测与过程挖掘工具的比较
组织已经看到了与记录的业务流程相对应的数据量的增加。处理流程数据是从影响公司价值的业务流程中提取相关信息的一种有意义的方法。尽管如此,业务流程在执行过程中会发生变化,从而增加了分析的复杂性。本文旨在评估当前可用的处理概念漂移的过程挖掘工具,即过程中发生的事件的统计属性随时间的变化。我们对这些工具进行了深入的分析,简要地比较了它们的差异、优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Outer-Tuning: an integration of rules, ontology and RDBMS Market Prediction in Criptocurrency: A Systematic Literature Mapping Machine learning techniques for code smells detection: an empirical experiment on a highly imbalanced setup Kairós LifeReview: A model for monitoring people with anxiety disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1