Mahira Zeeshan, Mahwash Mukhtar, Q. Ain, Salman Khan, H. Ali
{"title":"Nanopharmaceuticals: A Boon to the Brain-Targeted Drug Delivery","authors":"Mahira Zeeshan, Mahwash Mukhtar, Q. Ain, Salman Khan, H. Ali","doi":"10.5772/INTECHOPEN.83040","DOIUrl":null,"url":null,"abstract":"Brain is well known for its multifarious nature and complicated diseases. Brain consists of natural barriers that pose difficulty for the therapeutic agents to reach the brain tissues. Blood-brain barrier is the major barrier while blood-brain tumor barrier, blood-cerebrospinal (CSF) barrier and efflux pump impart additional hindrance. Therapeutic goal is to achieve a considerable drug concentration in the brain tissues in order to obtain desired therapeutic outcomes. To overcome the barriers, nanotechnology was employed in the field of drug delivery and brain targeting. Nanopharmaceuticals are rapidly emerging sub-branch that deals with the drug-loaded nanocarriers or nanomaterials that have unique physicochemical properties and minute size range for penetrating the CNS. Additionally, nanopharmaceuticals can be tailored with functional modalities to achieve active targeting to the brain tissues. The magic behind their therapeutic success is the reduced amount of dose and lesser toxicity, whereby local-izing the therapeutic agent to the specific site. Different types of nanopharmaceuticals like polymeric, lipidic and amphiphilic nanocarriers were administered into the living organisms by exploiting different routes for improved targeted therapy. Therefore, it is essential to throw light on the properties, mechanism and delivery route of the major nanopharmaceuticals that are employed for the brain-specific drug delivery.","PeriodicalId":433543,"journal":{"name":"Pharmaceutical Formulation Design - Recent Practices","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Formulation Design - Recent Practices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.83040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Brain is well known for its multifarious nature and complicated diseases. Brain consists of natural barriers that pose difficulty for the therapeutic agents to reach the brain tissues. Blood-brain barrier is the major barrier while blood-brain tumor barrier, blood-cerebrospinal (CSF) barrier and efflux pump impart additional hindrance. Therapeutic goal is to achieve a considerable drug concentration in the brain tissues in order to obtain desired therapeutic outcomes. To overcome the barriers, nanotechnology was employed in the field of drug delivery and brain targeting. Nanopharmaceuticals are rapidly emerging sub-branch that deals with the drug-loaded nanocarriers or nanomaterials that have unique physicochemical properties and minute size range for penetrating the CNS. Additionally, nanopharmaceuticals can be tailored with functional modalities to achieve active targeting to the brain tissues. The magic behind their therapeutic success is the reduced amount of dose and lesser toxicity, whereby local-izing the therapeutic agent to the specific site. Different types of nanopharmaceuticals like polymeric, lipidic and amphiphilic nanocarriers were administered into the living organisms by exploiting different routes for improved targeted therapy. Therefore, it is essential to throw light on the properties, mechanism and delivery route of the major nanopharmaceuticals that are employed for the brain-specific drug delivery.