{"title":"A low band cellular terminal antenna impedance tuner in 130nm CMOS-SOI technology","authors":"J. Lindstrand, I. Vasilev, H. Sjöland","doi":"10.1109/ESSCIRC.2014.6942121","DOIUrl":null,"url":null,"abstract":"This paper presents a low band antenna impedance tuner in 130nm CMOS-SOI technology. It consists of three digitally controlled switched capacitor banks and two off-chip inductors and is intended for use in terminals supporting modern cellular standards like WCDMA and LTE. By using a negative gate bias in the off state, linearity can be improved and maintained. Measurements show an OIP3 exceeding +55dBm for all measured impedance states, which cover a VSWR of up to 5.4. The measured minimum loss is 1dB or lower in the frequency range from 700-900MHz with spurious emissions below -30dBm at +33dBm input power. The switched capacitors are implemented with eight stacked transistors to yield a voltage handling of at least 20V, and in order to handle the large voltages custom designed capacitors are used.","PeriodicalId":202377,"journal":{"name":"ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2014.6942121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a low band antenna impedance tuner in 130nm CMOS-SOI technology. It consists of three digitally controlled switched capacitor banks and two off-chip inductors and is intended for use in terminals supporting modern cellular standards like WCDMA and LTE. By using a negative gate bias in the off state, linearity can be improved and maintained. Measurements show an OIP3 exceeding +55dBm for all measured impedance states, which cover a VSWR of up to 5.4. The measured minimum loss is 1dB or lower in the frequency range from 700-900MHz with spurious emissions below -30dBm at +33dBm input power. The switched capacitors are implemented with eight stacked transistors to yield a voltage handling of at least 20V, and in order to handle the large voltages custom designed capacitors are used.