AngHNE

Cangqi Zhou, Hui Chen, Jing Zhang, Qianmu Li, Dianming Hu
{"title":"AngHNE","authors":"Cangqi Zhou, Hui Chen, Jing Zhang, Qianmu Li, Dianming Hu","doi":"10.1145/3488560.3498510","DOIUrl":null,"url":null,"abstract":"Real-world networks often show heterogeneity. A frequently encountered type is the bipartite heterogeneous structure, in which two types of nodes and three types of edges exist. Recently, much attention has been devoted to representation learning in these networks. One of the essential differences between heterogeneous and homogeneous learning is that the former structure requires methods to possess awareness to node and edge types. Most existing methods, including metapath-based, proximity-based and graph neural network-based, adopt inner product or vector norms to evaluate the similarities in embedding space. However, these measures either violates the triangle inequality, or show severe sensitivity to scaling transformation. The limitations often hinder the applicability to real-world problems. In view of this, in this paper, we propose a novel angle-based method for bipartite heterogeneous network representation. Specifically, we first construct training sets by generating quintuples, which contain both positive and negative samples from two different parts of networks. Then we analyze the quintuple-based problem from a geometry perspective, and transform the comparisons between preferred and non-preferred samples to the comparisons of angles. In addition, we utilize convolution modules to extract node features. A hinge loss, as the final objective, is proposed to relax the angular constraint for learning. Extensive experiments for two typical tasks show the efficacy of the proposed method, comparing with eight competitive methods.","PeriodicalId":348686,"journal":{"name":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","volume":"305 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488560.3498510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-world networks often show heterogeneity. A frequently encountered type is the bipartite heterogeneous structure, in which two types of nodes and three types of edges exist. Recently, much attention has been devoted to representation learning in these networks. One of the essential differences between heterogeneous and homogeneous learning is that the former structure requires methods to possess awareness to node and edge types. Most existing methods, including metapath-based, proximity-based and graph neural network-based, adopt inner product or vector norms to evaluate the similarities in embedding space. However, these measures either violates the triangle inequality, or show severe sensitivity to scaling transformation. The limitations often hinder the applicability to real-world problems. In view of this, in this paper, we propose a novel angle-based method for bipartite heterogeneous network representation. Specifically, we first construct training sets by generating quintuples, which contain both positive and negative samples from two different parts of networks. Then we analyze the quintuple-based problem from a geometry perspective, and transform the comparisons between preferred and non-preferred samples to the comparisons of angles. In addition, we utilize convolution modules to extract node features. A hinge loss, as the final objective, is proposed to relax the angular constraint for learning. Extensive experiments for two typical tasks show the efficacy of the proposed method, comparing with eight competitive methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AngHNE
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AdaptKT: A Domain Adaptable Method for Knowledge Tracing Doctoral Consortium of WSDM'22: Exploring the Bias of Adversarial Defenses Half-Day Tutorial on Combating Online Hate Speech: The Role of Content, Networks, Psychology, User Behavior, etc. Near Real Time AI Personalization for Notifications at LinkedIn k-Clustering with Fair Outliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1