{"title":"Video-Based Coding Of Volumetric Data","authors":"D. Graziosi, B. Kroon","doi":"10.1109/ICIP40778.2020.9190689","DOIUrl":null,"url":null,"abstract":"New standards are emerging for the coding of volumetric 3D data such as immersive video and point clouds. Some of these volumetric encoders similarly utilize video codecs as the core of their compression approach, but apply different techniques to convert volumetric 3D data into 2D content for subsequent 2D video compression. Currently in MPEG there are two activities that follow this paradigm: ISO/IEC 23090-5 Video-based Point Cloud Compression (V-PCC) and ISO/IEC 23090-12 MPEG Immersive Video (MIV). In this article we propose for both standards to define 2D projection as common transmission format. We then describe a procedure based on camera projections that is applicable to both standards to convert 3D information into 2D images for efficient 2D compression. Results show that our approach successfully encodes both point clouds and immersive video content with the same performance as the current test models that MPEG experts developed separately for the respective standards. We conclude the article by discussing further integration steps and future directions.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
New standards are emerging for the coding of volumetric 3D data such as immersive video and point clouds. Some of these volumetric encoders similarly utilize video codecs as the core of their compression approach, but apply different techniques to convert volumetric 3D data into 2D content for subsequent 2D video compression. Currently in MPEG there are two activities that follow this paradigm: ISO/IEC 23090-5 Video-based Point Cloud Compression (V-PCC) and ISO/IEC 23090-12 MPEG Immersive Video (MIV). In this article we propose for both standards to define 2D projection as common transmission format. We then describe a procedure based on camera projections that is applicable to both standards to convert 3D information into 2D images for efficient 2D compression. Results show that our approach successfully encodes both point clouds and immersive video content with the same performance as the current test models that MPEG experts developed separately for the respective standards. We conclude the article by discussing further integration steps and future directions.