A skeleton-free kinect system for body mass index assessment using deep neural networks

D. Nahavandi, A. Abobakr, H. Haggag, M. Hossny, S. Nahavandi, D. Filippidis
{"title":"A skeleton-free kinect system for body mass index assessment using deep neural networks","authors":"D. Nahavandi, A. Abobakr, H. Haggag, M. Hossny, S. Nahavandi, D. Filippidis","doi":"10.1109/SYSENG.2017.8088252","DOIUrl":null,"url":null,"abstract":"In this paper we present a skeleton-free Kinect system to estimate body mass index (BMI) of human bodies. Unlike other systems in the literature, the proposed system does not require a scale to measure the weight. The weight of observed subjects are estimated using body surface area (BSA) regression. The proposed system employs the state-of-the-art deep residual network to extract meaningful features and estimate the BMI scores with a 95% accuracy.","PeriodicalId":354846,"journal":{"name":"2017 IEEE International Systems Engineering Symposium (ISSE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Systems Engineering Symposium (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSENG.2017.8088252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we present a skeleton-free Kinect system to estimate body mass index (BMI) of human bodies. Unlike other systems in the literature, the proposed system does not require a scale to measure the weight. The weight of observed subjects are estimated using body surface area (BSA) regression. The proposed system employs the state-of-the-art deep residual network to extract meaningful features and estimate the BMI scores with a 95% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种使用深度神经网络评估身体质量指数的无骨骼kinect系统
在本文中,我们提出了一个无骨骼Kinect系统来估计人体的身体质量指数(BMI)。与文献中的其他系统不同,所提出的系统不需要秤来测量重量。使用体表面积(BSA)回归估计观察对象的体重。该系统采用最先进的深度残差网络来提取有意义的特征,并以95%的准确率估计BMI分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP Docker container-based big data processing system in multiple clouds for everyone Development of hybrid aerial/terrestrial robot system and its automation Understanding evolution in systems of systems Reliability importance assessment using cost-based credible improvement potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1