D. Nahavandi, A. Abobakr, H. Haggag, M. Hossny, S. Nahavandi, D. Filippidis
{"title":"A skeleton-free kinect system for body mass index assessment using deep neural networks","authors":"D. Nahavandi, A. Abobakr, H. Haggag, M. Hossny, S. Nahavandi, D. Filippidis","doi":"10.1109/SYSENG.2017.8088252","DOIUrl":null,"url":null,"abstract":"In this paper we present a skeleton-free Kinect system to estimate body mass index (BMI) of human bodies. Unlike other systems in the literature, the proposed system does not require a scale to measure the weight. The weight of observed subjects are estimated using body surface area (BSA) regression. The proposed system employs the state-of-the-art deep residual network to extract meaningful features and estimate the BMI scores with a 95% accuracy.","PeriodicalId":354846,"journal":{"name":"2017 IEEE International Systems Engineering Symposium (ISSE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Systems Engineering Symposium (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSENG.2017.8088252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
In this paper we present a skeleton-free Kinect system to estimate body mass index (BMI) of human bodies. Unlike other systems in the literature, the proposed system does not require a scale to measure the weight. The weight of observed subjects are estimated using body surface area (BSA) regression. The proposed system employs the state-of-the-art deep residual network to extract meaningful features and estimate the BMI scores with a 95% accuracy.