ArchDB: Towards Parallelized Recovery in Massive Archived Databases

Kai Du, Zhijian Yuan, Shuqiang Yang, Huaimin Wang
{"title":"ArchDB: Towards Parallelized Recovery in Massive Archived Databases","authors":"Kai Du, Zhijian Yuan, Shuqiang Yang, Huaimin Wang","doi":"10.1109/FGCNS.2008.79","DOIUrl":null,"url":null,"abstract":"Monitoring online transactions or tracking users' behavior will generate large-scale archived streaming data in scientific experiments, inner-network audit logs and so on. These archived systems may scale up to petabytes (1015 Bytes). Storing and analyzing the structural data in such scale calls forth at least three challenging issues: data reliability, data storing and analyzing performance, and tradeoff between high reliability and high performance. Based on analyzing the characteristics of the archived streaming data, we propose a novel high reliable log-free database architecture, ArchDB. In order to meet the three challenges, this paper designs optimized data placement policy, data block size and data archiving occasion, pipelining and parallelizing archiving procedure. The experimental results show ArchDB can double the insertion performance and speed up the recovery process by a factor of the parallel recovery degree.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring online transactions or tracking users' behavior will generate large-scale archived streaming data in scientific experiments, inner-network audit logs and so on. These archived systems may scale up to petabytes (1015 Bytes). Storing and analyzing the structural data in such scale calls forth at least three challenging issues: data reliability, data storing and analyzing performance, and tradeoff between high reliability and high performance. Based on analyzing the characteristics of the archived streaming data, we propose a novel high reliable log-free database architecture, ArchDB. In order to meet the three challenges, this paper designs optimized data placement policy, data block size and data archiving occasion, pipelining and parallelizing archiving procedure. The experimental results show ArchDB can double the insertion performance and speed up the recovery process by a factor of the parallel recovery degree.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ArchDB:迈向大规模归档数据库的并行恢复
监控网上交易或跟踪用户行为将在科学实验、内网审计日志等方面产生大规模的存档流数据。这些归档系统可以扩展到pb(1015字节)。如此大规模的结构化数据的存储和分析至少提出了三个具有挑战性的问题:数据可靠性,数据存储和分析性能,以及高可靠性和高性能之间的权衡。在分析归档流数据特点的基础上,提出了一种新的高可靠无日志数据库架构——ArchDB。为了应对这三个挑战,本文设计了优化的数据放置策略、数据块大小和数据归档场合、流水线化和并行化归档过程。实验结果表明,ArchDB可以将插入性能提高一倍,并将并行恢复程度提高一倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Event Recognition for Visual Surveillance Systems Lossless Information Hiding Scheme Based on Neighboring Correlation HSV Color Space and Face Detection Based Objectionable Image Detecting User Interface Concurrency in Web Service Client Systems Visuo-Motor Coordination in Bipedal Humanoid Robot Walking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1