Conversion of ConvNets to Spiking Neural Networks With Less Than One Spike per Neuron

Javier Lopez-Randulfe, Nico Reeb, Alois Knoll
{"title":"Conversion of ConvNets to Spiking Neural Networks With Less Than One Spike per Neuron","authors":"Javier Lopez-Randulfe, Nico Reeb, Alois Knoll","doi":"10.32470/ccn.2022.1081-0","DOIUrl":null,"url":null,"abstract":"Spiking neural networks can leverage the high efficiency of temporal coding by converting architectures that were previously learnt with the backpropagation algorithm. In this work, we present the application of a time-coded neuron model for the conversion of classic artificial neural networks that re-duces the computational complexity in the synaptic connections. By adapting the ReLU activation function, the network achieved a sparsity of 0.142 spikes per neuron. The classifi-cation of handwritten digits from the MNIST dataset show that the neuron model is able to convert convolutional neural networks with several hidden layers.","PeriodicalId":341186,"journal":{"name":"2022 Conference on Cognitive Computational Neuroscience","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2022.1081-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Spiking neural networks can leverage the high efficiency of temporal coding by converting architectures that were previously learnt with the backpropagation algorithm. In this work, we present the application of a time-coded neuron model for the conversion of classic artificial neural networks that re-duces the computational complexity in the synaptic connections. By adapting the ReLU activation function, the network achieved a sparsity of 0.142 spikes per neuron. The classifi-cation of handwritten digits from the MNIST dataset show that the neuron model is able to convert convolutional neural networks with several hidden layers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络到每个神经元少于一个尖峰的尖峰神经网络的转换
脉冲神经网络可以通过转换之前用反向传播算法学习的架构来利用时间编码的高效率。在这项工作中,我们提出了一个时间编码神经元模型的应用,用于经典人工神经网络的转换,减少了突触连接的计算复杂性。通过采用ReLU激活函数,网络实现了每个神经元0.142个峰值的稀疏性。对MNIST数据集中手写数字的分类表明,该神经元模型能够转换具有多个隐藏层的卷积神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Common Encoding Axes for Face Selectivity and Non-face Objects in Macaque Face Cells Latent dimensionality scales with the performance of deep learning models of visual cortex Manipulating and Measuring Variation in DNN Representations 20 and 40-Hz Flickering-Light Stimulation Induces Changes in Functional Connectivity of Memory-Related Areas Modeling pain in the brain with conditional variational autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1