{"title":"Enabling Robot-assisted Motion Capture with Human Scale Tracking Optimization","authors":"Pascal Chiu, Jiawei Huang, Y. Kitamura","doi":"10.1145/3489849.3489881","DOIUrl":null,"url":null,"abstract":"Motion tracking systems with viewpoint concerns or whose marker data include unreliable states have proven difficult to use despite many impactful benefits. We propose a technique inspired by active vision and using a customized hill-climbing approach to control a robot-sensor setup and apply it to a magnetic induction system capable of occlusion-free motion tracking. Our solution reduces the impact of displacement and orientation issues for markers which inherently present a dead-angle range that disturbs usability and accuracy. The resulting interface is successful in stabilizing previously unexploitable data while preventing sub-optimal states for up to hundreds of occurrences per recording and featuring an approximate 40% decrease in tracking error.","PeriodicalId":345527,"journal":{"name":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489849.3489881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motion tracking systems with viewpoint concerns or whose marker data include unreliable states have proven difficult to use despite many impactful benefits. We propose a technique inspired by active vision and using a customized hill-climbing approach to control a robot-sensor setup and apply it to a magnetic induction system capable of occlusion-free motion tracking. Our solution reduces the impact of displacement and orientation issues for markers which inherently present a dead-angle range that disturbs usability and accuracy. The resulting interface is successful in stabilizing previously unexploitable data while preventing sub-optimal states for up to hundreds of occurrences per recording and featuring an approximate 40% decrease in tracking error.