{"title":"Exploiting Sparsity in Pruned Neural Networks to Optimize Large Model Training","authors":"Siddharth Singh, A. Bhatele","doi":"10.1109/IPDPS54959.2023.00033","DOIUrl":null,"url":null,"abstract":"Parallel training of neural networks at scale is challenging due to significant overheads arising from communication. Recently, deep learning researchers have developed a variety of pruning algorithms that are capable of pruning (i.e. setting to zero) 80-90% of the parameters in a neural network to yield sparse subnetworks that equal the accuracy of the unpruned parent network. In this work, we propose a novel approach that exploits these sparse subnetworks to optimize the memory utilization and communication in two popular algorithms for parallel deep learning namely – data and inter-layer parallelism. We integrate our approach into AxoNN, a highly scalable framework for parallel deep learning that relies on data and inter-layer parallelism, and demonstrate the reduction in communication time and memory utilization. On 512 NVIDIA V100 GPUs, our optimizations reduce the memory consumption of a 2.7 billion parameter model by 74%, and the total communication time by 40%, thus providing an overall speedup of 34% over AxoNN, 32% over DeepSpeed-3D and 46% over Sputnik, a sparse matrix computation baseline.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Parallel training of neural networks at scale is challenging due to significant overheads arising from communication. Recently, deep learning researchers have developed a variety of pruning algorithms that are capable of pruning (i.e. setting to zero) 80-90% of the parameters in a neural network to yield sparse subnetworks that equal the accuracy of the unpruned parent network. In this work, we propose a novel approach that exploits these sparse subnetworks to optimize the memory utilization and communication in two popular algorithms for parallel deep learning namely – data and inter-layer parallelism. We integrate our approach into AxoNN, a highly scalable framework for parallel deep learning that relies on data and inter-layer parallelism, and demonstrate the reduction in communication time and memory utilization. On 512 NVIDIA V100 GPUs, our optimizations reduce the memory consumption of a 2.7 billion parameter model by 74%, and the total communication time by 40%, thus providing an overall speedup of 34% over AxoNN, 32% over DeepSpeed-3D and 46% over Sputnik, a sparse matrix computation baseline.