{"title":"Parametrization of Statistical Models in Three-layer Neural Networks","authors":"Tomohiro Washino, Tadashi Takahashi","doi":"10.1109/ICIET51873.2021.9419592","DOIUrl":null,"url":null,"abstract":"In a hierarchical structure model such as a neural network, the set of true parameters consists of not one point but a union of several manifolds and contains complicated singularities, making it difficult to analyze their behavior and discuss it theoretically. We first consider that the set of true parameters that is realizable by a statistical model with a hyperbolic tangent as an activation function are algebraic sets defined by finite polynomials. The main purpose of this paper is to show the parametrization of algebraic sets containing complicated singularities in three-layer neural networks using the Cröbner basis technique for finitely generated ideals.","PeriodicalId":156688,"journal":{"name":"2021 9th International Conference on Information and Education Technology (ICIET)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Information and Education Technology (ICIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIET51873.2021.9419592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In a hierarchical structure model such as a neural network, the set of true parameters consists of not one point but a union of several manifolds and contains complicated singularities, making it difficult to analyze their behavior and discuss it theoretically. We first consider that the set of true parameters that is realizable by a statistical model with a hyperbolic tangent as an activation function are algebraic sets defined by finite polynomials. The main purpose of this paper is to show the parametrization of algebraic sets containing complicated singularities in three-layer neural networks using the Cröbner basis technique for finitely generated ideals.