Effect of a Microdefect ahead of a Main Crack on Strength of Solids : Exact Solution to the Main Crack-Microdefect Interaction Model

Teruo Nakamura, Kenji Saito, S. Araki
{"title":"Effect of a Microdefect ahead of a Main Crack on Strength of Solids : Exact Solution to the Main Crack-Microdefect Interaction Model","authors":"Teruo Nakamura, Kenji Saito, S. Araki","doi":"10.1299/JSMEA1993.39.2_231","DOIUrl":null,"url":null,"abstract":"In our previous paper, an approximate solution to the main crack-microdefect interaction model was derived using a main crack stress field, and the effect of a microdefect ahead of a main crack on the strength of solids was discussed in terms of the model. In the present paper, in order to investigate more precisely the above effect, the main crack-microdefect interaction model is formulated more specifically based on the method of continuously distributed theory of dislocations, and the distribution functions for both a main crack and a microdefect are obtained. As a result, we obtain stress intensity factors K both at the tip of a main crack and a microdefect in the closed form. Using these K values, we elucidate the effective range of the above model and the crack shielding effect by a microdefect. Furthermore, the crack length dependence of the fracture strength and fracture toughness of engineering ceramics can be explained well theoretically using the present model.","PeriodicalId":143127,"journal":{"name":"JSME international journal. Series A, mechanics and material engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSME international journal. Series A, mechanics and material engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA1993.39.2_231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In our previous paper, an approximate solution to the main crack-microdefect interaction model was derived using a main crack stress field, and the effect of a microdefect ahead of a main crack on the strength of solids was discussed in terms of the model. In the present paper, in order to investigate more precisely the above effect, the main crack-microdefect interaction model is formulated more specifically based on the method of continuously distributed theory of dislocations, and the distribution functions for both a main crack and a microdefect are obtained. As a result, we obtain stress intensity factors K both at the tip of a main crack and a microdefect in the closed form. Using these K values, we elucidate the effective range of the above model and the crack shielding effect by a microdefect. Furthermore, the crack length dependence of the fracture strength and fracture toughness of engineering ceramics can be explained well theoretically using the present model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主裂纹前微缺陷对固体强度的影响:主裂纹-微缺陷相互作用模型的精确解
在之前的论文中,我们利用主裂纹应力场推导了主裂纹-微缺陷相互作用模型的近似解,并根据该模型讨论了主裂纹前微缺陷对固体强度的影响。为了更精确地研究上述效应,本文基于位错连续分布理论的方法,更具体地建立了主裂纹-微缺陷相互作用模型,得到了主裂纹和微缺陷的分布函数。因此,我们得到了主裂纹尖端和封闭形式微缺陷处的应力强度因子K。利用这些K值,我们阐明了上述模型的有效范围以及微缺陷对裂纹的屏蔽效应。此外,利用该模型可以很好地解释工程陶瓷断裂强度和断裂韧性与裂纹长度的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inverse analysis related to stress separation in thermoelastic stress analysis Two-Dimensional Stress Wave Propagation in a Transversely Isotropic Cylinder X-Ray Stress Measurement for Textured Materials Endochronic analysis for viscoplastic collapse of a thin-walled tube under combined bending and external pressure Plastic Properties of Metal-Metal Composites : A Numerical Investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1