A novel approach to orientation estimation using inertial cues and visual feature locality constraint

Yinlong Zhang, Wei Liang, Jindong Tan
{"title":"A novel approach to orientation estimation using inertial cues and visual feature locality constraint","authors":"Yinlong Zhang, Wei Liang, Jindong Tan","doi":"10.1109/INDIN.2016.7819299","DOIUrl":null,"url":null,"abstract":"This paper presents an orientation estimation methods using inertial cues (IMU) and visual feature constraint. Our proposed approach combines both of these two modalities in an original way. Two feature-point correspondences between consecutive frames are firstly selected that not merely meet the requirement of descriptor similarity constraint but the locality constraint. Secondly, these two selected correspondences together with inertial quaternions are jointly employed to derive the initial body pose. Thirdly, a coarse-to-fine procedure proceeds in removing visual false matches and in estimating body poses iteratively using the Posteriori Bayes Rule and Expectation Maximization. Eventually, the optimal orientation is estimated via the iteratively selected visual inliers. Experimental results validate that our proposed strategy is effective and accurate in orientation estimate.","PeriodicalId":421680,"journal":{"name":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2016.7819299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an orientation estimation methods using inertial cues (IMU) and visual feature constraint. Our proposed approach combines both of these two modalities in an original way. Two feature-point correspondences between consecutive frames are firstly selected that not merely meet the requirement of descriptor similarity constraint but the locality constraint. Secondly, these two selected correspondences together with inertial quaternions are jointly employed to derive the initial body pose. Thirdly, a coarse-to-fine procedure proceeds in removing visual false matches and in estimating body poses iteratively using the Posteriori Bayes Rule and Expectation Maximization. Eventually, the optimal orientation is estimated via the iteratively selected visual inliers. Experimental results validate that our proposed strategy is effective and accurate in orientation estimate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于惯性线索和视觉特征局部性约束的定向估计新方法
提出了一种基于惯性线索和视觉特征约束的定位估计方法。我们提出的方法以一种新颖的方式结合了这两种方式。首先选取两个连续帧之间的特征点对应关系,既满足描述子相似性约束又满足局部性约束的要求;其次,结合惯性四元数,利用这两个选择的对应关系推导初始体姿;第三,使用后验贝叶斯规则和期望最大化迭代估计身体姿态,进行从粗到精的去除视觉虚假匹配过程。最后,通过迭代选择的视觉内线估计出最优方向。实验结果验证了该策略的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LPV modelling and LPV observer-based fault detection for wind turbine systems Determining the optimal level of autonomy in cyber-physical production systems Detecting illegally parked vehicle based on cumulative dual foreground difference An electronic stethoscope for heart diseases based on micro-electro-mechanical-system microphone A PID controller for the underwater robot station-keeping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1