{"title":"Design of a self-organized Intelligent Electrode for synchronous measurement of multiple bio-signals in a wearable healthcare monitoring system","authors":"Geng Yang, J. Mao, H. Tenhunen, Lirong Zheng","doi":"10.1109/ISABEL.2010.5702786","DOIUrl":null,"url":null,"abstract":"This paper presents an Intelligent Electrodes and Active Cable based wearable medical system. Within each Intelligent Electrode, an Application Specific Integrated Circuit (ASIC) is integrated which includes a gain-bandwidth selectable analog front-end circuit, an 8-bit SAR ADC and a digital controller. The key of the ASIC is the analog front-end circuit with tunable gain and bandwidth which can be configured for Electrocardiogram (ECG), Electroencephalogram (EEG) or Electromyogram (EMG) measurement. Common mode interference is effectively rejected due to the circuit's high Common Mode Rejection Ratio (CMRR), which is higher than 135 dB up to 100 Hz and better than 110dB up to 1 kHz. Since a dedicated data transmission protocol is implemented on chip, the Intelligent Electrodes can establish a self-organized network and perform synchronous measurements for multiple bio-signals.","PeriodicalId":165367,"journal":{"name":"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISABEL.2010.5702786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper presents an Intelligent Electrodes and Active Cable based wearable medical system. Within each Intelligent Electrode, an Application Specific Integrated Circuit (ASIC) is integrated which includes a gain-bandwidth selectable analog front-end circuit, an 8-bit SAR ADC and a digital controller. The key of the ASIC is the analog front-end circuit with tunable gain and bandwidth which can be configured for Electrocardiogram (ECG), Electroencephalogram (EEG) or Electromyogram (EMG) measurement. Common mode interference is effectively rejected due to the circuit's high Common Mode Rejection Ratio (CMRR), which is higher than 135 dB up to 100 Hz and better than 110dB up to 1 kHz. Since a dedicated data transmission protocol is implemented on chip, the Intelligent Electrodes can establish a self-organized network and perform synchronous measurements for multiple bio-signals.