Clustering centroid finding algorithm (CCFA) using spatial temporal data mining concept

S. Baboo, K. Tajudin
{"title":"Clustering centroid finding algorithm (CCFA) using spatial temporal data mining concept","authors":"S. Baboo, K. Tajudin","doi":"10.1109/ICPRIME.2013.6496443","DOIUrl":null,"url":null,"abstract":"The main aim of the research focuses the clustering centroid value for spatio-temporal data mining. Using k-means, advanced k-means algorithm and Avg Centroid (AC) clustering. The real time data of the hurricane Indian Ocean 2001 to 2010 maximum wind details are focused in this paper. The clustering is taking as selection window method, the first window form the basis of the pixel coordinate value of the screen, the second clustering window one half of the centre point value. The data mining retrieves clustering data form basis of the selection window. Here to discuss k-means algorithmic steps are very few and same iteration is continuing till the same to get the centroid point. The enhanced k-means algorithm taken more steps but result is accurate algorithmic finishing stage; iteration also repeated very minimum times. The final discussion of this paper collects average centroid clustering for all previously selected values and current selected clustering data. The result of this paper gave the comparative study of the k-means, enhanced k-means algorithms and AC clustering values.","PeriodicalId":123210,"journal":{"name":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2013.6496443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The main aim of the research focuses the clustering centroid value for spatio-temporal data mining. Using k-means, advanced k-means algorithm and Avg Centroid (AC) clustering. The real time data of the hurricane Indian Ocean 2001 to 2010 maximum wind details are focused in this paper. The clustering is taking as selection window method, the first window form the basis of the pixel coordinate value of the screen, the second clustering window one half of the centre point value. The data mining retrieves clustering data form basis of the selection window. Here to discuss k-means algorithmic steps are very few and same iteration is continuing till the same to get the centroid point. The enhanced k-means algorithm taken more steps but result is accurate algorithmic finishing stage; iteration also repeated very minimum times. The final discussion of this paper collects average centroid clustering for all previously selected values and current selected clustering data. The result of this paper gave the comparative study of the k-means, enhanced k-means algorithms and AC clustering values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空数据挖掘概念的聚类质心查找算法
研究的主要目的是为时空数据挖掘提供聚类质心值。采用k-means、先进的k-means算法和Avg质心聚类。本文重点介绍了2001 ~ 2010年印度洋飓风最大风场的实时资料。聚类采用选择窗口的方法,第一个窗口为屏幕像素坐标值的基础,第二个聚类窗口为中心点值的一半。数据挖掘基于选择窗口检索聚类数据。这里要讨论的是k-means算法的步骤非常少,重复迭代直到得到质心点为止。改进的k-means算法虽然步骤较多,但结果处于精确的算法精加工阶段;迭代重复的次数也非常少。本文的最后讨论收集了所有先前选择的值和当前选择的聚类数据的平均质心聚类。本文的结果对k-means、增强型k-means算法和AC聚类值进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Separable reversible data hiding using Rc4 algorithm Personal approach for mobile search: A review Bijective soft set based classification of medical data Deployment and power assignment problem in Wireless Sensor Networks for intruder detection application using MEA Protein sequence motif patterns using adaptive Fuzzy C-Means granular computing model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1