Influence of Desalination on Behavior of Prestressing Steel

T. Ueda, A. Hattori, T. Miyagawa, M. Fujii, S. Mizoguchi, M. Ashida
{"title":"Influence of Desalination on Behavior of Prestressing Steel","authors":"T. Ueda, A. Hattori, T. Miyagawa, M. Fujii, S. Mizoguchi, M. Ashida","doi":"10.14359/6045","DOIUrl":null,"url":null,"abstract":"Desalination is the electrochemical method aiming to remove chlorides from reinforced concrete structures. Until now, it has been applied only to reinforced concrete structures and not to prestressed concrete structures. In this study, desalination was applied to chloride contaminated concrete specimens with pretensioned prestressing steel bars. As a result of the slow strain rate tensile test of prestressing bars after applying desalination, significant influence of treatment on the elastic behavior and plastic behavior until the tensile strength point was not shown but the influence of hydrogen embrittlement due to treatment was impacted on the fracture strength and the contraction rate of fractured sections. As a result of absorbed hydrogen measurement of prestressing steel bars from treated specimens, the release peak of diffusible hydrogen was found. Furthermore, as a result of keeping treated specimens for 1 month, the first peak of diffusible hydrogen (around 470 K) and the change of the fracture behavior due to hydrogen embrittlement disappeared.","PeriodicalId":255305,"journal":{"name":"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/6045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Desalination is the electrochemical method aiming to remove chlorides from reinforced concrete structures. Until now, it has been applied only to reinforced concrete structures and not to prestressed concrete structures. In this study, desalination was applied to chloride contaminated concrete specimens with pretensioned prestressing steel bars. As a result of the slow strain rate tensile test of prestressing bars after applying desalination, significant influence of treatment on the elastic behavior and plastic behavior until the tensile strength point was not shown but the influence of hydrogen embrittlement due to treatment was impacted on the fracture strength and the contraction rate of fractured sections. As a result of absorbed hydrogen measurement of prestressing steel bars from treated specimens, the release peak of diffusible hydrogen was found. Furthermore, as a result of keeping treated specimens for 1 month, the first peak of diffusible hydrogen (around 470 K) and the change of the fracture behavior due to hydrogen embrittlement disappeared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脱盐对预应力钢性能的影响
海水淡化是一种电化学方法,旨在去除钢筋混凝土结构中的氯化物。到目前为止,它只应用于钢筋混凝土结构,而不是预应力混凝土结构。本研究对氯离子污染的预应力钢筋混凝土进行了脱盐处理。通过淡化后预应力筋的慢应变速率拉伸试验发现,处理对拉伸强度点前的弹性性能和塑性性能影响不明显,但处理引起的氢脆对断裂强度和断裂断面收缩率的影响较大。对处理后的预应力钢筋进行了吸氢测量,发现了扩散氢的释放峰。此外,处理后的试样保存1个月后,扩散氢的第一个峰值(470 K左右)和氢脆导致的断裂行为变化消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Properties of High-Strength and High-Fluidity Lightweight Concrete Basic Study on the New Testing Method of Judging the Saturated Surface Dry Conditions of Fine Aggregates Investigations on Durability of High-Volume Fly Ash Concrete Thermal Properties of High Strength Concrete at Elevated Temperatures Cracking Tendency of High Strength Lightweight Aggregate Concrete at Early Ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1