Lightweight Connectivity In Graph Convolutional Networks For Skeleton-Based Recognition

H. Sahbi
{"title":"Lightweight Connectivity In Graph Convolutional Networks For Skeleton-Based Recognition","authors":"H. Sahbi","doi":"10.1109/ICIP42928.2021.9506774","DOIUrl":null,"url":null,"abstract":"Graph convolutional networks (GCNs) aim at extending deep learning to arbitrary irregular domains, namely graphs. Their success is highly dependent on how the topology of input graphs is defined and most of the existing GCN architectures rely on predefined or handcrafted graph structures. In this paper, we introduce a novel method that learns the topology (or connectivity) of input graphs as a part of GCN design. The main contribution of our method resides in building an orthogonal connectivity basis that optimally aggregates nodes, through their neighborhood, prior to achieve convolution. Our method also considers a stochasticity criterion which acts as a regularizer that makes the learned basis and the underlying GCNs lightweight while still being highly effective. Experiments conducted on the challenging task of skeleton-based hand-gesture recognition show the high effectiveness of the learned GCNs w.r.t. the related work.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Graph convolutional networks (GCNs) aim at extending deep learning to arbitrary irregular domains, namely graphs. Their success is highly dependent on how the topology of input graphs is defined and most of the existing GCN architectures rely on predefined or handcrafted graph structures. In this paper, we introduce a novel method that learns the topology (or connectivity) of input graphs as a part of GCN design. The main contribution of our method resides in building an orthogonal connectivity basis that optimally aggregates nodes, through their neighborhood, prior to achieve convolution. Our method also considers a stochasticity criterion which acts as a regularizer that makes the learned basis and the underlying GCNs lightweight while still being highly effective. Experiments conducted on the challenging task of skeleton-based hand-gesture recognition show the high effectiveness of the learned GCNs w.r.t. the related work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于骨架识别的图卷积网络中的轻量级连通性
图卷积网络(GCNs)旨在将深度学习扩展到任意不规则域,即图。它们的成功高度依赖于如何定义输入图的拓扑结构,大多数现有的GCN架构依赖于预定义的或手工制作的图结构。在本文中,我们介绍了一种学习输入图的拓扑(或连通性)的新方法,作为GCN设计的一部分。我们的方法的主要贡献在于建立一个正交连接基,通过它们的邻域,在实现卷积之前最优地聚集节点。我们的方法还考虑了一个随机准则,它作为一个正则化器,使学习到的基和底层的GCNs轻量级,同时仍然非常有效。在具有挑战性的基于骨骼的手势识别任务中进行的实验表明,学习到的GCNs与相关工作相结合,具有很高的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1