{"title":"Low-latency scheduling in large switches","authors":"W. Olesinski, N. Gura, H. Eberle, A. Mejia","doi":"10.1145/1323548.1323566","DOIUrl":null,"url":null,"abstract":"Scheduling in large switches is challenging. Arbiters must operate at high rates to keep up with the high switching rates demanded by multi-gigabit-per-second link rates and short cells. Low-latency requirements of some applications also challenge the design of schedulers. In this paper, we propose the Parallel Wrapped Wave Front Arbiter with Fast Scheduler (PWWFA-FS). We analyze its performance, present simulation results, discuss its implementation, and show how this scheme can provide low latency under light load while scaling to large switches with multi-terabit-per-second throughput and hundreds of ports.","PeriodicalId":329300,"journal":{"name":"Symposium on Architectures for Networking and Communications Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Architectures for Networking and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1323548.1323566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Scheduling in large switches is challenging. Arbiters must operate at high rates to keep up with the high switching rates demanded by multi-gigabit-per-second link rates and short cells. Low-latency requirements of some applications also challenge the design of schedulers. In this paper, we propose the Parallel Wrapped Wave Front Arbiter with Fast Scheduler (PWWFA-FS). We analyze its performance, present simulation results, discuss its implementation, and show how this scheme can provide low latency under light load while scaling to large switches with multi-terabit-per-second throughput and hundreds of ports.