Graph Minimally-supervised Learning

Kaize Ding, Jundong Li, N. Chawla, Huan Liu
{"title":"Graph Minimally-supervised Learning","authors":"Kaize Ding, Jundong Li, N. Chawla, Huan Liu","doi":"10.1145/3488560.3501390","DOIUrl":null,"url":null,"abstract":"Graphs are widely used for abstracting complex systems of interacting objects, such as social networks, knowledge graphs, and traffic networks, as well as for modeling molecules, manifolds, and source code. To model such graph-structured data, graph learning, in particular deep graph learning with graph neural networks, has drawn much attention in both academic and industrial communities lately. Prevailing graph learning methods usually rely on learning from \"big'' data, requiring a large amount of labeled data for model training. However, it is common that graphs are associated with \"small'' labeled data as data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph learning with minimal human supervision for the low-resource settings where limited or even no labeled data is available. In this tutorial, we will focus on the state-of-the-art techniques of Graph Minimally-supervised Learning, in particular a series of weakly-supervised learning, few-shot learning, and self-supervised learning methods on graph-structured data as well as their real-world applications. The objectives of this tutorial are to: (1) formally categorize the problems in graph minimally-supervised learning and discuss the challenges under different learning scenarios; (2) comprehensively review the existing and recent advances of graph minimally-supervised learning; and (3) elucidate open questions and future research directions. This tutorial introduces major topics within minimally-supervised learning and offers a guide to a new frontier of graph learning. We believe this tutorial is beneficial to researchers and practitioners, allowing them to collaborate on graph learning.","PeriodicalId":348686,"journal":{"name":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488560.3501390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Graphs are widely used for abstracting complex systems of interacting objects, such as social networks, knowledge graphs, and traffic networks, as well as for modeling molecules, manifolds, and source code. To model such graph-structured data, graph learning, in particular deep graph learning with graph neural networks, has drawn much attention in both academic and industrial communities lately. Prevailing graph learning methods usually rely on learning from "big'' data, requiring a large amount of labeled data for model training. However, it is common that graphs are associated with "small'' labeled data as data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph learning with minimal human supervision for the low-resource settings where limited or even no labeled data is available. In this tutorial, we will focus on the state-of-the-art techniques of Graph Minimally-supervised Learning, in particular a series of weakly-supervised learning, few-shot learning, and self-supervised learning methods on graph-structured data as well as their real-world applications. The objectives of this tutorial are to: (1) formally categorize the problems in graph minimally-supervised learning and discuss the challenges under different learning scenarios; (2) comprehensively review the existing and recent advances of graph minimally-supervised learning; and (3) elucidate open questions and future research directions. This tutorial introduces major topics within minimally-supervised learning and offers a guide to a new frontier of graph learning. We believe this tutorial is beneficial to researchers and practitioners, allowing them to collaborate on graph learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图最小监督学习
图被广泛用于抽象交互对象的复杂系统,如社会网络、知识图和交通网络,以及分子、流形和源代码的建模。为了对这样的图结构数据建模,图学习,特别是使用图神经网络的深度图学习,最近在学术界和工业界都引起了很大的关注。主流的图学习方法通常依赖于从“大”数据中学习,需要大量标记数据进行模型训练。然而,图通常与“小”标记数据相关联,因为数据注释和在图上标记总是耗时和消耗资源。因此,在有限甚至没有标记数据的低资源环境中,必须在最少的人类监督下研究图学习。在本教程中,我们将重点介绍图最小监督学习的最新技术,特别是图结构数据上的一系列弱监督学习、少镜头学习和自监督学习方法及其在现实世界中的应用。本教程的目的是:(1)对图最小监督学习中的问题进行正式分类,并讨论不同学习场景下的挑战;(2)全面回顾图最小监督学习的现有和最新进展;(3)阐明有待解决的问题和未来的研究方向。本教程介绍了最小监督学习中的主要主题,并为图学习的新前沿提供了指南。我们相信本教程对研究人员和实践者有益,使他们能够在图学习上进行协作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AdaptKT: A Domain Adaptable Method for Knowledge Tracing Doctoral Consortium of WSDM'22: Exploring the Bias of Adversarial Defenses Half-Day Tutorial on Combating Online Hate Speech: The Role of Content, Networks, Psychology, User Behavior, etc. Near Real Time AI Personalization for Notifications at LinkedIn k-Clustering with Fair Outliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1