{"title":"Flexible, stretchable, and healable transistors","authors":"F. Cicoira","doi":"10.1117/12.2597258","DOIUrl":null,"url":null,"abstract":"My talk will deal with processing and characterization of conducting polymer films and devices for flexible, stretchable and healable transistors. \nSelf-healing electronic materials are highly relevant for application in biology and sustainable electronics. We observed mechanical and electrical healability of PEDOT:PSS thin films. Upon reaching a certain thickness (about 1 µm), PEDOT:PSS thin films damaged with a sharp blade can be healed by simply wetting the damaged area with water. The process is rapid, with a response time on the order of 150 ms. Significantly, by blending with other polymers, the films are transformed into autonomic self-healing materials without the need of external stimulation. This reveals a new property of PEDOT:PSS and enables its immediate use in flexible and biocompatible electronics, such as electronic skin and bio-implanted electronics, placing conducting polymers on the front line for healing applications in bioelectronics.","PeriodicalId":175873,"journal":{"name":"Organic and Hybrid Field-Effect Transistors XX","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Hybrid Field-Effect Transistors XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2597258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
My talk will deal with processing and characterization of conducting polymer films and devices for flexible, stretchable and healable transistors.
Self-healing electronic materials are highly relevant for application in biology and sustainable electronics. We observed mechanical and electrical healability of PEDOT:PSS thin films. Upon reaching a certain thickness (about 1 µm), PEDOT:PSS thin films damaged with a sharp blade can be healed by simply wetting the damaged area with water. The process is rapid, with a response time on the order of 150 ms. Significantly, by blending with other polymers, the films are transformed into autonomic self-healing materials without the need of external stimulation. This reveals a new property of PEDOT:PSS and enables its immediate use in flexible and biocompatible electronics, such as electronic skin and bio-implanted electronics, placing conducting polymers on the front line for healing applications in bioelectronics.