On line signature verification: Fusion of a Hidden Markov Model and a neural network via a support vector machine

Marc Fuentes, S. Garcia-Salicetti, B. Dorizzi
{"title":"On line signature verification: Fusion of a Hidden Markov Model and a neural network via a support vector machine","authors":"Marc Fuentes, S. Garcia-Salicetti, B. Dorizzi","doi":"10.1109/IWFHR.2002.1030918","DOIUrl":null,"url":null,"abstract":"We propose in this work to perform on-line signature verification by the fusion of two complementary verification modules. The first one considers a signature as a sequence of points and models the genuine signatures of a given signer by a Hidden Markov Model (HMM). Forgeries are used to compute a decision threshold. In the second module, global parameters of a signature are the inputs of a two-classes neural network trained for each signer on both the genuine and \"other\" signatures (genuine signatures of other signers). Fusion of the scores given by these two experts through a Support Vector Machine (SVM), allows improving the results over those of each module, on Philips' Database.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

We propose in this work to perform on-line signature verification by the fusion of two complementary verification modules. The first one considers a signature as a sequence of points and models the genuine signatures of a given signer by a Hidden Markov Model (HMM). Forgeries are used to compute a decision threshold. In the second module, global parameters of a signature are the inputs of a two-classes neural network trained for each signer on both the genuine and "other" signatures (genuine signatures of other signers). Fusion of the scores given by these two experts through a Support Vector Machine (SVM), allows improving the results over those of each module, on Philips' Database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线签名验证:基于支持向量机的隐马尔可夫模型与神经网络的融合
在这项工作中,我们建议通过融合两个互补的验证模块来进行在线签名验证。第一种方法将签名视为一个点序列,利用隐马尔可夫模型(HMM)对给定签名者的真实签名进行建模。赝品用于计算决策阈值。在第二个模块中,签名的全局参数是为每个签名者在真实签名和“其他”签名(其他签名者的真实签名)上训练的两类神经网络的输入。通过支持向量机(SVM)融合这两位专家给出的分数,可以在飞利浦的数据库中改进每个模块的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1