Relaxation-based pattern matching using automatic differentiation for off-line character recognition

T. Nagasaki, T. Yanagida, M. Nakagawa
{"title":"Relaxation-based pattern matching using automatic differentiation for off-line character recognition","authors":"T. Nagasaki, T. Yanagida, M. Nakagawa","doi":"10.1109/ICDAR.1999.791766","DOIUrl":null,"url":null,"abstract":"The paper describes a relaxation based matching method for offline character recognition. This method employs elastic stroke models as standard character patterns. Pattern similarity between a standard and an input pattern is defined by fuzzy logic. The matching process is formalized as a maximization problem of the similarity and computed by the steepest descent technique. To implement this technique, we adopted automatic differentiation, which made it possible to calculate the partial derivatives of the target function automatically, only given the definition of that function. Results of computer experiments targeting 46 hiragana characters from the ETL8B database revealed a maximum recognition rate of 98.8% for 20 input sets when combining stroke springs with relative location springs.","PeriodicalId":130039,"journal":{"name":"Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99 (Cat. No.PR00318)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99 (Cat. No.PR00318)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1999.791766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper describes a relaxation based matching method for offline character recognition. This method employs elastic stroke models as standard character patterns. Pattern similarity between a standard and an input pattern is defined by fuzzy logic. The matching process is formalized as a maximization problem of the similarity and computed by the steepest descent technique. To implement this technique, we adopted automatic differentiation, which made it possible to calculate the partial derivatives of the target function automatically, only given the definition of that function. Results of computer experiments targeting 46 hiragana characters from the ETL8B database revealed a maximum recognition rate of 98.8% for 20 input sets when combining stroke springs with relative location springs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于松弛模式匹配的自动分异离线字符识别
提出了一种基于松弛的离线字符识别匹配方法。该方法采用弹性笔画模型作为标准字符模式。标准模式和输入模式之间的模式相似度由模糊逻辑定义。将匹配过程形式化为相似度最大化问题,采用最陡下降法进行计算。为了实现这一技术,我们采用了自动微分,这使得只要给定目标函数的定义,就可以自动计算目标函数的偏导数。针对ETL8B数据库中的46个平假名字符进行了计算机实验,结果表明,将笔画弹簧与相对位置弹簧相结合,对20个输入集的识别率最高可达98.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A two-step algorithm and its parallelization for the generation of minimum containing rectangles for document image segmentation Error correction of Korean courtesy amounts in bank slips using rule information and cross-referencing An off-line signature verification system using an extracted displacement function Quality evaluation of document segmentation results Handwritten numeral string recognition with stroke grouping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1