Research on Case Preprocessing Based on Bert -CNN-LSTM Model

Chuyue Zhang, Manchun Cai, Xiaofan Zhao
{"title":"Research on Case Preprocessing Based on Bert -CNN-LSTM Model","authors":"Chuyue Zhang, Manchun Cai, Xiaofan Zhao","doi":"10.1109/PDCAT46702.2019.00054","DOIUrl":null,"url":null,"abstract":"In this paper, we apply the deep learning algorithm to preprocess the criminal case information. By extracting the characteristics of the brief case field, the missing content of other required field is plugged through model training. The experimental results show that the precision rate of CNN-LSTM model is 3% higher than that of LSTM-CNN model in text classification. After the Bert model is integrated, the precision rate, recall rate, and F value are all improved by 10%. To the best of our knowledge, this is the first time to use Bert model in preprocessing criminal case information.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we apply the deep learning algorithm to preprocess the criminal case information. By extracting the characteristics of the brief case field, the missing content of other required field is plugged through model training. The experimental results show that the precision rate of CNN-LSTM model is 3% higher than that of LSTM-CNN model in text classification. After the Bert model is integrated, the precision rate, recall rate, and F value are all improved by 10%. To the best of our knowledge, this is the first time to use Bert model in preprocessing criminal case information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Bert -CNN-LSTM模型的案例预处理研究
本文将深度学习算法应用于刑事案件信息的预处理。通过提取简要案例字段的特征,通过模型训练来填补其他必要字段的缺失内容。实验结果表明,在文本分类中,CNN-LSTM模型的准确率比LSTM-CNN模型高出3%。整合Bert模型后,准确率、召回率和F值都提高了10%。据我们所知,这是第一次使用Bert模型对刑事案件信息进行预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RNC: Reliable Network Property Classifier Based on Graph Embedding NFV Optimization Algorithm for Shortest Path and Service Function Assignment I/O Scheduling for Limited-Size Burst-Buffers Deployed High Performance Computing Efficient Fault-Tolerant Syndrome Measurement of Quantum Error-Correcting Codes Based on "Flag" Adaptive Clustering Strategy Based on Capacity Weight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1