Orthoimage Super-Resolution via Deep Convolutional Neural Networks

V. Berezovsky, Yunfeng Bai, Ivan Sharshov, R. Aleshko, K. Shoshina, I. Vasendina
{"title":"Orthoimage Super-Resolution via Deep Convolutional Neural Networks","authors":"V. Berezovsky, Yunfeng Bai, Ivan Sharshov, R. Aleshko, K. Shoshina, I. Vasendina","doi":"10.1109/INDIN51773.2022.9976074","DOIUrl":null,"url":null,"abstract":"Using high resolution (HR) images collected from UAV, aerial craft or satellites is a research hotspot in the field forest areas analyzing. In practice, HR images are available for a small number of regions, while for the rest, the maximum density various around 1 px/m. HR image reconstruction is a well-known problem in computer vision. Recently, deep learning algorithms have achieved great success in image processing, so we have introduced them into the field of processing orthoimages. At the same time, we noticed that orthoimages generally have colorful blocks of different sizes. Taking into account this feature, we did not apply the classical algorithms directly, but made some improvements. Experiments show that the effect of proposed method is equivalent to the effect of classical algorithms, however, at the preprocessing stage, it significantly saves time. An approach to the forest areas analyzing, including image segmentation and the tree spices classification is proposed. The results of numerical calculations are presented.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using high resolution (HR) images collected from UAV, aerial craft or satellites is a research hotspot in the field forest areas analyzing. In practice, HR images are available for a small number of regions, while for the rest, the maximum density various around 1 px/m. HR image reconstruction is a well-known problem in computer vision. Recently, deep learning algorithms have achieved great success in image processing, so we have introduced them into the field of processing orthoimages. At the same time, we noticed that orthoimages generally have colorful blocks of different sizes. Taking into account this feature, we did not apply the classical algorithms directly, but made some improvements. Experiments show that the effect of proposed method is equivalent to the effect of classical algorithms, however, at the preprocessing stage, it significantly saves time. An approach to the forest areas analyzing, including image segmentation and the tree spices classification is proposed. The results of numerical calculations are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积神经网络的正射影超分辨率
利用无人机、飞行器或卫星采集的高分辨率影像是野外林区分析的研究热点。在实践中,HR图像可用于少数区域,而对于其余区域,最大密度在1 px/m左右变化。HR图像重建是计算机视觉中一个众所周知的问题。近年来,深度学习算法在图像处理方面取得了巨大的成功,因此我们将其引入到正射影图像处理领域。同时,我们注意到正射影一般有不同大小的彩色块。考虑到这一特点,我们没有直接应用经典算法,而是做了一些改进。实验表明,该方法的效果与经典算法相当,但在预处理阶段显著节省了时间。提出了一种森林区域分析方法,包括图像分割和树种分类。给出了数值计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Board Secretaries’ Q&R Data Offset Estimation Based on ARIMA-LSTM for Time Synchronization in Single Twisted Pair Ethernet Dynamic Task Offloading Approach for Task Delay Reduction in the IoT-enabled Fog Computing Systems Fuzzy PID Control for Multi-joint Robotic Arm Graph Attention Network for Financial Aspect-based Sentiment Classification with Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1