Dan Meng, Guitao Cao, Y. Duan, Minghua Zhu, Liping Tu, Jia-tuo Xu, Dong-Guo Xu
{"title":"A deep tongue image features analysis model for medical application","authors":"Dan Meng, Guitao Cao, Y. Duan, Minghua Zhu, Liping Tu, Jia-tuo Xu, Dong-Guo Xu","doi":"10.1109/BIBM.2016.7822815","DOIUrl":null,"url":null,"abstract":"With the improvement of people's living standards, there is no doubt that people are paying more and more attention to their health. However, shortage of medical resources is a critical global problem. As a result, an intelligent prognostics system has a great potential to play important roles in computer aided diagnosis. Numerous papers reported that tongue features have been closely related to a human's state. Among them, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by a deep convolutional neural network (CNN), we propose a deep tongue image feature analysis system to extract unbiased features and reduce human labor for tongue diagnosis. With the unbalanced sample distribution, it is hard to form a balanced classification model based on feature representations obtained by existing low-level and high-level methods. Our proposed deep tongue image feature analysis model learns high-level features and provide more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed system on a set of 267 gastritis patients, and a control group of 48 healthy volunteers (labeled according to Western medical practices). Test results show that the proposed deep tongue image feature analysis model can classify a given tongue image into healthy and diseased state with an average accuracy of 91.49%, which demonstrates the relationship between human body's state and its deep tongue image features.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
With the improvement of people's living standards, there is no doubt that people are paying more and more attention to their health. However, shortage of medical resources is a critical global problem. As a result, an intelligent prognostics system has a great potential to play important roles in computer aided diagnosis. Numerous papers reported that tongue features have been closely related to a human's state. Among them, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by a deep convolutional neural network (CNN), we propose a deep tongue image feature analysis system to extract unbiased features and reduce human labor for tongue diagnosis. With the unbalanced sample distribution, it is hard to form a balanced classification model based on feature representations obtained by existing low-level and high-level methods. Our proposed deep tongue image feature analysis model learns high-level features and provide more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed system on a set of 267 gastritis patients, and a control group of 48 healthy volunteers (labeled according to Western medical practices). Test results show that the proposed deep tongue image feature analysis model can classify a given tongue image into healthy and diseased state with an average accuracy of 91.49%, which demonstrates the relationship between human body's state and its deep tongue image features.