Comparison of feed forward and cascade neural network for harmonic current estimation in power electronic converter

A. Venkadesan, G. Bhavana, D. Haneesha, K. Sedhuraman
{"title":"Comparison of feed forward and cascade neural network for harmonic current estimation in power electronic converter","authors":"A. Venkadesan, G. Bhavana, D. Haneesha, K. Sedhuraman","doi":"10.1109/IICIRES.2017.8078295","DOIUrl":null,"url":null,"abstract":"This paper presents harmonic current estimation using neural network for a power electronic converter. Three types of popular neural architectures namely single hidden layered Feedforward architecture, multi hidden layered Feedforward neural architecture, cascade architecture are considered for investigation. The non-linear load namely diode bridge uncontrolled rectifier with resistive inductive (RL) load is chosen for study. All the three architectures are trained and tested using MATLAB simulation. The performance of three types of neural architectures is compared in terms of accuracy and complexity for harmonic current estimation. The suitable neural architecture is identified for harmonic current estimation. The results obtained are presented.","PeriodicalId":244063,"journal":{"name":"2017 International Conference on Innovative Research In Electrical Sciences (IICIRES)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Innovative Research In Electrical Sciences (IICIRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICIRES.2017.8078295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents harmonic current estimation using neural network for a power electronic converter. Three types of popular neural architectures namely single hidden layered Feedforward architecture, multi hidden layered Feedforward neural architecture, cascade architecture are considered for investigation. The non-linear load namely diode bridge uncontrolled rectifier with resistive inductive (RL) load is chosen for study. All the three architectures are trained and tested using MATLAB simulation. The performance of three types of neural architectures is compared in terms of accuracy and complexity for harmonic current estimation. The suitable neural architecture is identified for harmonic current estimation. The results obtained are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前馈与级联神经网络在电力电子变换器谐波电流估计中的比较
提出了一种基于神经网络的电力电子变换器谐波电流估计方法。研究了目前流行的三种神经网络结构,即单隐层前馈结构、多层隐层前馈结构和级联结构。选择非线性负载即二极管桥式无控整流器带阻感性负载进行研究。所有三种架构都使用MATLAB仿真进行了训练和测试。从谐波电流估计的精度和复杂度两方面比较了三种神经网络结构的性能。确定了适合于谐波电流估计的神经网络结构。给出了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low power conventional universal shift register using 4: 1 multiplexer Design and control of SVPWM based DSTATCOM for power quality improvement Performance analysis of high power generation techniques and algorithms of solar photovoltaic systems also with the renewable energy hybrid systems A novel approach to nine switch unified power quality conditioner for power quality improvement Performance analysis of wireless power transfer(WPT) through two-coil and three-coil structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1