The SODA approach: leveraging high-level synthesis for hardware/software co-design and hardware specialization: invited

Nicolas Bohm Agostini, S. Curzel, Ankur Limaye, Vinay C. Amatya, Marco Minutoli, Vito Giovanni Castellana, J. Manzano, Antonino Tumeo, Fabrizio Ferrandi
{"title":"The SODA approach: leveraging high-level synthesis for hardware/software co-design and hardware specialization: invited","authors":"Nicolas Bohm Agostini, S. Curzel, Ankur Limaye, Vinay C. Amatya, Marco Minutoli, Vito Giovanni Castellana, J. Manzano, Antonino Tumeo, Fabrizio Ferrandi","doi":"10.1145/3489517.3530628","DOIUrl":null,"url":null,"abstract":"Novel \"converged\" applications combine phases of scientific simulation with data analysis and machine learning. Each computational phase can benefit from specialized accelerators. However, algorithms evolve so quickly that mapping them on existing accelerators is suboptimal or even impossible. This paper presents the SODA (Software Defined Accelerators) framework, a modular, multi-level, open-source, no-human-in-the-loop, hardware synthesizer that enables end-to-end generation of specialized accelerators. SODA is composed of SODA-Opt, a high-level frontend developed in MLIR that interfaces with domain-specific programming frameworks and allows performing system level design, and Bambu, a state-of-the-art high-level synthesis engine that can target different device technologies. The framework implements design space exploration as compiler optimization passes. We show how the modular, yet tight, integration of the high-level optimizer and lower-level HLS tools enables the generation of accelerators optimized for the computational patterns of converged applications. We then discuss some of the research opportunities that such a framework allows, including system-level design, profile driven optimization, and supporting new optimization metrics.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Novel "converged" applications combine phases of scientific simulation with data analysis and machine learning. Each computational phase can benefit from specialized accelerators. However, algorithms evolve so quickly that mapping them on existing accelerators is suboptimal or even impossible. This paper presents the SODA (Software Defined Accelerators) framework, a modular, multi-level, open-source, no-human-in-the-loop, hardware synthesizer that enables end-to-end generation of specialized accelerators. SODA is composed of SODA-Opt, a high-level frontend developed in MLIR that interfaces with domain-specific programming frameworks and allows performing system level design, and Bambu, a state-of-the-art high-level synthesis engine that can target different device technologies. The framework implements design space exploration as compiler optimization passes. We show how the modular, yet tight, integration of the high-level optimizer and lower-level HLS tools enables the generation of accelerators optimized for the computational patterns of converged applications. We then discuss some of the research opportunities that such a framework allows, including system-level design, profile driven optimization, and supporting new optimization metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SODA方法:利用硬件/软件协同设计和硬件专门化的高级综合:邀请
新颖的“融合”应用将科学模拟与数据分析和机器学习相结合。每个计算阶段都可以从专门的加速器中获益。然而,算法发展得如此之快,以至于将它们映射到现有的加速器上是次优的,甚至是不可能的。本文介绍了SODA(软件定义的加速器)框架,它是一个模块化的、多层次的、开源的、无人在环的硬件合成器,能够端到端生成专门的加速器。SODA由SODA- opt和Bambu组成,前者是在MLIR中开发的高级前端,可与特定领域的编程框架接口,并允许执行系统级设计,后者是最先进的高级合成引擎,可针对不同的设备技术。该框架在编译器优化通过时实现设计空间探索。我们将展示高级优化器和低级HLS工具的模块化紧密集成如何支持生成针对聚合应用程序的计算模式进行优化的加速器。然后我们讨论了这样一个框架允许的一些研究机会,包括系统级设计、配置文件驱动的优化,以及支持新的优化度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timing macro modeling with graph neural networks Thermal-aware optical-electrical routing codesign for on-chip signal communications PHANES ScaleHLS Terminator on SkyNet: a practical DVFS attack on DNN hardware IP for UAV object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1