Distributed thermal-aware task scheduling for 3D Network-on-Chip

Yingnan Cui, Wei Zhang, Hao Yu
{"title":"Distributed thermal-aware task scheduling for 3D Network-on-Chip","authors":"Yingnan Cui, Wei Zhang, Hao Yu","doi":"10.1109/ICCD.2012.6378690","DOIUrl":null,"url":null,"abstract":"The development of 3D integration technology significantly improves the bandwidth of network-on-chip (NoC) system. However, the 3D technology-enabled high integration density also brings severe concerns of temperature increase, which may impair system reliability and degrade the performance. Task scheduling has been regarded as one effective approach in eliminating thermal hotspot without introducing hardware overhead. However, centralized thermal-aware task scheduling algorithms for 3D-NoC have been limited for incurring high computational complexity as the system scale increase. In this paper, we propose a distributed agent-based thermal-aware task scheduling algorithm for 3D-NoC which shows high scheduling efficiency and high scalability. Experimental results have shown that when compared to the centralized algorithms, our algorithm can achieve up to 13 °C reduction in peak temperature of the system without sacrificing performance.","PeriodicalId":313428,"journal":{"name":"2012 IEEE 30th International Conference on Computer Design (ICCD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2012.6378690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The development of 3D integration technology significantly improves the bandwidth of network-on-chip (NoC) system. However, the 3D technology-enabled high integration density also brings severe concerns of temperature increase, which may impair system reliability and degrade the performance. Task scheduling has been regarded as one effective approach in eliminating thermal hotspot without introducing hardware overhead. However, centralized thermal-aware task scheduling algorithms for 3D-NoC have been limited for incurring high computational complexity as the system scale increase. In this paper, we propose a distributed agent-based thermal-aware task scheduling algorithm for 3D-NoC which shows high scheduling efficiency and high scalability. Experimental results have shown that when compared to the centralized algorithms, our algorithm can achieve up to 13 °C reduction in peak temperature of the system without sacrificing performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维片上网络的分布式热感知任务调度
三维集成技术的发展极大地提高了片上网络系统的带宽。然而,3D技术带来的高集成度也带来了严重的温度升高问题,这可能会影响系统的可靠性和性能。任务调度被认为是在不引入硬件开销的情况下消除热热点的一种有效方法。然而,随着系统规模的增加,集中式热感知任务调度算法的计算复杂度很高,因此受到了限制。本文提出了一种基于分布式智能体的3D-NoC热感知任务调度算法,该算法具有较高的调度效率和可扩展性。实验结果表明,与集中式算法相比,我们的算法可以在不牺牲性能的情况下将系统的峰值温度降低13°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oblivious routing design for mesh networks to achieve a new worst-case throughput bound WaveSync: A low-latency source synchronous bypass network-on-chip architecture Integration of correct-by-construction BIP models into the MetroII design space exploration flow Dynamic phase-based tuning for embedded systems using phase distance mapping A comparative study of wearout mechanisms in state-of-art microprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1