Support vector machine for diagnosis of inductioi motors: A comparative analysis in terms of the quantity and the signal processing tool used to build the feature space

Á. Sapena-Bañó, M. Pineda-Sánchez, R. Puche-Panadero, J. Roger-Folch, J. Pérez-Cruz, M. Riera-Guasp
{"title":"Support vector machine for diagnosis of inductioi motors: A comparative analysis in terms of the quantity and the signal processing tool used to build the feature space","authors":"Á. Sapena-Bañó, M. Pineda-Sánchez, R. Puche-Panadero, J. Roger-Folch, J. Pérez-Cruz, M. Riera-Guasp","doi":"10.1109/DEMPED.2013.6645710","DOIUrl":null,"url":null,"abstract":"The use of advanced diagnosis techniques for induction motor (IM) faults relies on the use of automated classifiers, such as those based on support vector machines (SVMs), which are able to assess the condition of the machine using a set of relevant features extracted either from the time domain or from the frequency domain machines signals. But the performance of such systems depends on two main factors: the quantity that is used to obtain the machine's condition, and the signal processing tool used for extract the features set. In this paper, a combination of the most used quantities and signal processing tools is used for diagnosis a set of machines with broken bars, fed from the mains and from variable speed drives, using the same SVM. In this way, the most efficient combination can be chosen, from the point of view of the performance of the automatic classifier system.","PeriodicalId":425644,"journal":{"name":"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2013.6645710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The use of advanced diagnosis techniques for induction motor (IM) faults relies on the use of automated classifiers, such as those based on support vector machines (SVMs), which are able to assess the condition of the machine using a set of relevant features extracted either from the time domain or from the frequency domain machines signals. But the performance of such systems depends on two main factors: the quantity that is used to obtain the machine's condition, and the signal processing tool used for extract the features set. In this paper, a combination of the most used quantities and signal processing tools is used for diagnosis a set of machines with broken bars, fed from the mains and from variable speed drives, using the same SVM. In this way, the most efficient combination can be chosen, from the point of view of the performance of the automatic classifier system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于感应电机诊断的支持向量机:用于构建特征空间的数量和信号处理工具的比较分析
异步电机(IM)故障的高级诊断技术的使用依赖于自动分类器的使用,例如基于支持向量机(svm)的自动分类器,它能够使用从时域或频域机器信号中提取的一组相关特征来评估机器的状态。但是这种系统的性能取决于两个主要因素:用于获取机器状态的数量,以及用于提取特征集的信号处理工具。在本文中,使用最常用的数量和信号处理工具的组合来诊断一组机器的断条,从市电和变速驱动,使用相同的支持向量机。这样,就可以从自动分类器系统性能的角度来选择最有效的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-cost IC less self oscillating boost PFC converter Sensorless speed estimation and diagnosis of induction motors based on purified space vectors Bearing faults detection in induction machines based on statistical processing of the stray fluxes measurements 2-Pole turbo-generator eccentricity diagnosis by split-phase current signature analysis An accurate and fast technique for correcting spectral leakage in motor diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1