Design and Analysis of Slotted Ground Rectangular Patch Antenna for Worldwide Interoperability for Microwave Access, Wireless Local Area Network, Ultra Wideband and X-Band Applications

Anjaneyulu Katuru, Mahesh Dronadula
{"title":"Design and Analysis of Slotted Ground Rectangular Patch Antenna for Worldwide Interoperability for Microwave Access, Wireless Local Area Network, Ultra Wideband and X-Band Applications","authors":"Anjaneyulu Katuru, Mahesh Dronadula","doi":"10.1109/ICCES45898.2019.9002419","DOIUrl":null,"url":null,"abstract":"In the present letter, we are designing a co-planar waveguide rectangular patch antenna with an area of $(\\mathbf{Lp}\\times \\mathbf{Wp}) \\mathbf{mm}^{\\mathbf{2}}$. This is exciting by using a feed line having the dimensions of $(\\mathbf{Lf}\\times \\mathbf{WD})\\ \\mathbf{mm}^{\\mathbf{2}}$. An FR-4 substrate occupying the volume of $(\\mathbf{L}\\times \\mathbf{W}\\times \\mathbf{R})\\ \\mathbf{mm}^{\\mathbf{3}}$ is used. A ground plane having an area of $(\\mathbf{Lg}\\times \\mathbf{Wg})\\ \\mathbf{mm}^{\\mathbf{2}}$ is designed on the top of the substrate and an aperture of $(\\mathbf{Ls}\\times \\mathbf{Ws})\\ \\mathbf{mm}^{\\mathbf{2}}$ is cut on the ground to improve the bandwidth characteristics. The s designing and simulation was done by using microwave studio computer simulation technology (MS-CST). From the results, it is observed the proposed structure is operating at 3.4 GHz (i.e., IEEE 802.16-WiMAX-worldwide interoperability for microwave access), 5.15 GHz (i.e., IEEE 802.11a-WLAN-wireless local area network), 3.1-10.6 GHz (UWB-ultra-wideband), and 8–12 GHz (X-band) applications. And it is also observed that the proposed antenna exhibits nearly Omni directional radiation patterns, return loss (S11) $< -\\mathbf{10}\\ \\mathbf{dB}$ and VSWR (voltage standing wave ratio) $< \\mathbf{2}$ and gain $\\leq \\mathbf{5}\\ \\mathbf{dB}$ except at the resonant frequency, 6.75 GHz within the UWB range.","PeriodicalId":348347,"journal":{"name":"2019 International Conference on Communication and Electronics Systems (ICCES)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Communication and Electronics Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES45898.2019.9002419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the present letter, we are designing a co-planar waveguide rectangular patch antenna with an area of $(\mathbf{Lp}\times \mathbf{Wp}) \mathbf{mm}^{\mathbf{2}}$. This is exciting by using a feed line having the dimensions of $(\mathbf{Lf}\times \mathbf{WD})\ \mathbf{mm}^{\mathbf{2}}$. An FR-4 substrate occupying the volume of $(\mathbf{L}\times \mathbf{W}\times \mathbf{R})\ \mathbf{mm}^{\mathbf{3}}$ is used. A ground plane having an area of $(\mathbf{Lg}\times \mathbf{Wg})\ \mathbf{mm}^{\mathbf{2}}$ is designed on the top of the substrate and an aperture of $(\mathbf{Ls}\times \mathbf{Ws})\ \mathbf{mm}^{\mathbf{2}}$ is cut on the ground to improve the bandwidth characteristics. The s designing and simulation was done by using microwave studio computer simulation technology (MS-CST). From the results, it is observed the proposed structure is operating at 3.4 GHz (i.e., IEEE 802.16-WiMAX-worldwide interoperability for microwave access), 5.15 GHz (i.e., IEEE 802.11a-WLAN-wireless local area network), 3.1-10.6 GHz (UWB-ultra-wideband), and 8–12 GHz (X-band) applications. And it is also observed that the proposed antenna exhibits nearly Omni directional radiation patterns, return loss (S11) $< -\mathbf{10}\ \mathbf{dB}$ and VSWR (voltage standing wave ratio) $< \mathbf{2}$ and gain $\leq \mathbf{5}\ \mathbf{dB}$ except at the resonant frequency, 6.75 GHz within the UWB range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向微波接入、无线局域网、超宽带和x波段应用的开槽接地矩形贴片天线的全球互操作性设计与分析
在这封信中,我们正在设计一个面积为$(\mathbf{Lp}\times \mathbf{Wp}) \mathbf{mm}^{\mathbf{2}}$的共面波导矩形贴片天线。通过使用尺寸为$(\mathbf{Lf}\times \mathbf{WD})\ \mathbf{mm}^{\mathbf{2}}$的进料行,这是令人兴奋的。采用体积为$(\mathbf{L}\times \mathbf{W}\times \mathbf{R})\ \mathbf{mm}^{\mathbf{3}}$的FR-4基板。在基板顶部设计面积为$(\mathbf{Lg}\times \mathbf{Wg})\ \mathbf{mm}^{\mathbf{2}}$的接地面,并在地面上切割孔径$(\mathbf{Ls}\times \mathbf{Ws})\ \mathbf{mm}^{\mathbf{2}}$以提高带宽特性。利用微波工作室计算机仿真技术(MS-CST)进行了设计和仿真。从结果中可以观察到,所提出的结构在3.4 GHz(即IEEE 802.16- wimax -微波接入的全球互操作性),5.15 GHz(即IEEE 802.11a- wlan -无线局域网),3.1-10.6 GHz (uwb -超宽带)和8-12 GHz (x波段)应用下运行。在UWB范围内,除谐振频率为6.75 GHz外,天线的回波损耗(S11) $< -\mathbf{10}\ \mathbf{dB}$、驻波比(VSWR) $< \mathbf{2}$和增益$\leq \mathbf{5}\ \mathbf{dB}$均接近全向辐射方向图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Library System Using Robotic Arm Road Crack Detection and Segmentation for Autonomous Driving Design and Simulation of Two Stage Sample and Hold Circuit with Low Power using Current Controlled Conveyor The PI Controllers and its optimal tuning for Load Frequency Control (LFC) of Hybrid Hydro-thermal Power Systems Low Power Hardware Based Real Time Music System and Digital Data Transmission Using FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1