Visualized Clustering of Ideas for Group Argumentation

Bin Luo, Xijin J. Tang
{"title":"Visualized Clustering of Ideas for Group Argumentation","authors":"Bin Luo, Xijin J. Tang","doi":"10.1109/WI-IAT.2010.280","DOIUrl":null,"url":null,"abstract":"This paper addresses visualized clustering methods that are embedded in CorMap and iView analysis of ideas towards the concerned topic. K-means clustering, automatic affinity diagram (KJ method) and self-organizing map are applied to CorMap analysis and graph clustering algorithm is applied to iView analysis are introduced. We report the visualized clustering results of workshops of a famous scientific forum, show the features of each clustering and compare their performance.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses visualized clustering methods that are embedded in CorMap and iView analysis of ideas towards the concerned topic. K-means clustering, automatic affinity diagram (KJ method) and self-organizing map are applied to CorMap analysis and graph clustering algorithm is applied to iView analysis are introduced. We report the visualized clustering results of workshops of a famous scientific forum, show the features of each clustering and compare their performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群体论证思想的可视化聚类
本文讨论了嵌入在CorMap和iView中的可视化聚类方法,并对相关主题进行了思想分析。将K-means聚类、自动关联图(KJ法)和自组织图应用于CorMap分析,将图聚类算法应用于iView分析。报告了某著名科学论坛研讨会的可视化聚类结果,展示了各聚类的特点,并对其性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1