Optical Coherence Tomography Image Segmentation for Cornea Surgery using Deep Neural Networks

Young Jin Heo, Ikjong Park, K. H. Kim, Myoung-Joon Kim, W. Chung
{"title":"Optical Coherence Tomography Image Segmentation for Cornea Surgery using Deep Neural Networks","authors":"Young Jin Heo, Ikjong Park, K. H. Kim, Myoung-Joon Kim, W. Chung","doi":"10.1109/URAI.2018.8441889","DOIUrl":null,"url":null,"abstract":"This paper describes use of deep neural networks for semantic segmentation of optical coherence tomography (OCT) images to accurately predict segmentation masks from noisy and occluded OCT images. The OCT images and semantic masks are acquired and commercial surgical tools, from an ex-vivo porcine eye. Simple post-processing can compute needle tip position and insertion depth from the predicted semantic masks. The segmentation accuracy, needle tip position error, and insertion depth error obtained from the FCN-8s, dilated convolution, and U-Net were compared. U-Net achieved the highest accuracy in the presence of occlusion and object overlap (81.5% mean IoU; 30.0-ILm tip-position error). The results show that the OCT image segmentation can be applied to the development of a surgical robot for corneal suturing.","PeriodicalId":347727,"journal":{"name":"2018 15th International Conference on Ubiquitous Robots (UR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2018.8441889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes use of deep neural networks for semantic segmentation of optical coherence tomography (OCT) images to accurately predict segmentation masks from noisy and occluded OCT images. The OCT images and semantic masks are acquired and commercial surgical tools, from an ex-vivo porcine eye. Simple post-processing can compute needle tip position and insertion depth from the predicted semantic masks. The segmentation accuracy, needle tip position error, and insertion depth error obtained from the FCN-8s, dilated convolution, and U-Net were compared. U-Net achieved the highest accuracy in the presence of occlusion and object overlap (81.5% mean IoU; 30.0-ILm tip-position error). The results show that the OCT image segmentation can be applied to the development of a surgical robot for corneal suturing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的角膜手术光学相干断层图像分割
本文描述了使用深度神经网络对光学相干断层扫描(OCT)图像进行语义分割,以准确地从噪声和遮挡的OCT图像中预测分割掩模。OCT图像和语义掩模是通过商业手术工具从离体猪眼获得的。简单的后处理可以根据预测的语义掩码计算针尖位置和插入深度。比较了FCN-8s、扩张卷积和U-Net得到的分割精度、针尖位置误差和插入深度误差。在存在遮挡和物体重叠的情况下,U-Net的准确率最高(平均IoU为81.5%;30.0-ILm尖端位置误差)。结果表明,OCT图像分割技术可应用于角膜缝合手术机器人的研制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pneumatic Sleeve-Assisted Stable sEMG Measurement for Microneedle Array Electrode The creation of SanTO: a robot with “divine” features Design, Implementation, and Control of the Underwater Legged Robot AquaShoko for Low-Signature Underwater Exploration Shared Teleoperation for Nuclear Plant Robotics Using Interactive Virtual Guidance Generation and Shared Autonomy Approaches IPMC Embedded in a Pneumatic Soft Robotic Actuator: Preliminary Experiments in Actuation and SensingBehaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1