A Study on the Comparison of the Effectiveness of the Jackknife Method in the Biased Estimators

N. Yıldız
{"title":"A Study on the Comparison of the Effectiveness of the Jackknife Method in the Biased Estimators","authors":"N. Yıldız","doi":"10.5772/INTECHOPEN.82366","DOIUrl":null,"url":null,"abstract":"In this study, we proposed an alternative biased estimator. The linear regression model might lead to ill-conditioned design matrices because of the multicollinearity and thus result in inadequacy of the ordinary least squares estimator (OLS). Scientists have developed alternative estimation techniques that would eradicate the instability in the estimates. Several biased estimators such as Stein estimator, the ordinary ridge regression (ORR) estimator, the principal components regression (PCR) estimator. Liu developed a Liu estimator (LE) by combining the Stein estimator with the ORR estimator. Since both ORR and LE depend on OLS estimator, multicollinearity affects them both. Therefore, the ORR and LE may give misleading information in the presence of multicollinearity. To overcome this problem, Liu introduced a new estimator, which is based on k and d biasing parameters, the authors worked on developing an estimator that would still have the valuable characteristics of the Liu-type estimator (LTE) but have a smaller bias. We are proposing a modified jackknife Liu-type estimator (MJLTE) that was created by combining the ideas underlying both the LTE and JLTE. Under mean square error matrix criteria, the MJLTE is superior to Liu-type estimator (LTE) and jackknifed Liu-type estimator (JLTE). Finally, a real data example and a Monte Carlo simulation are also given to illustrate theoretical results.","PeriodicalId":381809,"journal":{"name":"Statistical Methodologies","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we proposed an alternative biased estimator. The linear regression model might lead to ill-conditioned design matrices because of the multicollinearity and thus result in inadequacy of the ordinary least squares estimator (OLS). Scientists have developed alternative estimation techniques that would eradicate the instability in the estimates. Several biased estimators such as Stein estimator, the ordinary ridge regression (ORR) estimator, the principal components regression (PCR) estimator. Liu developed a Liu estimator (LE) by combining the Stein estimator with the ORR estimator. Since both ORR and LE depend on OLS estimator, multicollinearity affects them both. Therefore, the ORR and LE may give misleading information in the presence of multicollinearity. To overcome this problem, Liu introduced a new estimator, which is based on k and d biasing parameters, the authors worked on developing an estimator that would still have the valuable characteristics of the Liu-type estimator (LTE) but have a smaller bias. We are proposing a modified jackknife Liu-type estimator (MJLTE) that was created by combining the ideas underlying both the LTE and JLTE. Under mean square error matrix criteria, the MJLTE is superior to Liu-type estimator (LTE) and jackknifed Liu-type estimator (JLTE). Finally, a real data example and a Monte Carlo simulation are also given to illustrate theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有偏估计中叠刀方法有效性的比较研究
在这项研究中,我们提出了一个替代的有偏估计量。线性回归模型可能由于多重共线性导致病态设计矩阵,从而导致普通最小二乘估计量(OLS)的不充分。科学家们已经开发出了替代的估算技术来消除估算中的不稳定性。几种有偏估计,如Stein估计,普通岭回归(ORR)估计,主成分回归(PCR)估计。Liu将Stein估计量与ORR估计量相结合,提出了Liu估计量。由于ORR和LE都依赖于OLS估计量,多重共线性对它们都有影响。因此,当存在多重共线性时,ORR和LE可能给出误导性信息。为了克服这个问题,Liu引入了一个新的估计器,它基于k和d个偏置参数,作者致力于开发一个估计器,它仍然具有Liu型估计器(LTE)的有价值的特征,但具有较小的偏置。我们提出了一种改进的折刀柳型估计器(MJLTE),它是通过结合LTE和JLTE的基本思想而创建的。在均方误差矩阵准则下,MJLTE优于刘氏估计器(LTE)和jackknifed刘氏估计器(JLTE)。最后,通过实际数据算例和蒙特卡罗模拟来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introductory Chapter: Ramifications of Incomplete Knowledge Asymptotic Normality of Hill’s Estimator under Weak Dependence Methods of Russian Patent Analysis Development of Estimation Procedure of Population Mean in Two-Phase Stratified Sampling A Comparative Study of Maximum Likelihood Estimation and Bayesian Estimation for Erlang Distribution and Its Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1