Synthesis of normally-off boolean circuits: An evolutionary optimization approach utilizing spintronic devices

A. Roohi, Ramtin Zand, R. Demara
{"title":"Synthesis of normally-off boolean circuits: An evolutionary optimization approach utilizing spintronic devices","authors":"A. Roohi, Ramtin Zand, R. Demara","doi":"10.1109/ISQED.2018.8357264","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an evolutionary-driven circuit optimization methodology, which can be leveraged for the synthesis of spintronic-based normally-off computing (NoC) circuits. NoC architectures distribute nonvolatile memory elements throughout the CMOS logic plane, creating a new class of fine-grained functionally-constrained synthesis challenges. Spin-based NoC circuits synthesis objectives include increased computational throughput and reduced static power consumption. Our proposed methodology utilizes Genetic Algorithms (GAs) to optimize the implementation of a Boolean logic expression in terms of area, delay, or power consumption. It first leverages the spin-based device characteristics to achieve a primary semi-optimized implementation, then further performance optimization is applied to the implemented design based on the NoC requirements and optimization criteria. As a proof-of-concept, the optimization approach is leveraged to implement a functionally-complete set of Boolean logic gates using spin Hall effect (SHE)-magnetic tunnel junctions (MTJs), which are optimized for both power and delay objectives. NoC synthesis methodologies supporting NoC circuit design of emerging device and hybrid CMOS logic applications. Finally, Simulation results and analyses verified the functionality of our proposed optimization tool for NoC circuit implementations.","PeriodicalId":213351,"journal":{"name":"2018 19th International Symposium on Quality Electronic Design (ISQED)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2018.8357264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we develop an evolutionary-driven circuit optimization methodology, which can be leveraged for the synthesis of spintronic-based normally-off computing (NoC) circuits. NoC architectures distribute nonvolatile memory elements throughout the CMOS logic plane, creating a new class of fine-grained functionally-constrained synthesis challenges. Spin-based NoC circuits synthesis objectives include increased computational throughput and reduced static power consumption. Our proposed methodology utilizes Genetic Algorithms (GAs) to optimize the implementation of a Boolean logic expression in terms of area, delay, or power consumption. It first leverages the spin-based device characteristics to achieve a primary semi-optimized implementation, then further performance optimization is applied to the implemented design based on the NoC requirements and optimization criteria. As a proof-of-concept, the optimization approach is leveraged to implement a functionally-complete set of Boolean logic gates using spin Hall effect (SHE)-magnetic tunnel junctions (MTJs), which are optimized for both power and delay objectives. NoC synthesis methodologies supporting NoC circuit design of emerging device and hybrid CMOS logic applications. Finally, Simulation results and analyses verified the functionality of our proposed optimization tool for NoC circuit implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正常关断布尔电路的合成:利用自旋电子器件的进化优化方法
在本文中,我们开发了一种进化驱动电路优化方法,该方法可用于合成基于自旋电子的正常关闭计算(NoC)电路。NoC架构将非易失性存储元件分布在整个CMOS逻辑平面上,创造了一类新的细粒度功能约束合成挑战。基于自旋的NoC电路的合成目标包括提高计算吞吐量和降低静态功耗。我们提出的方法利用遗传算法(GAs)来优化布尔逻辑表达式在面积、延迟或功耗方面的实现。它首先利用基于自旋的器件特性来实现主要的半优化实现,然后根据NoC要求和优化标准对实现的设计进行进一步的性能优化。作为概念验证,该优化方法利用自旋霍尔效应(SHE)-磁隧道结(MTJs)实现了一组功能完备的布尔逻辑门,并针对功率和延迟目标进行了优化。支持新兴器件和混合CMOS逻辑应用的NoC电路设计的NoC合成方法。最后,仿真结果和分析验证了我们提出的优化工具在NoC电路实现中的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Body-biasing assisted vmin optimization for 5nm-node multi-Vt FD-SOI 6T-SRAM PDA-HyPAR: Path-diversity-aware hybrid planar adaptive routing algorithm for 3D NoCs A loop structure optimization targeting high-level synthesis of fast number theoretic transform Hybrid-comp: A criticality-aware compressed last-level cache Low power latch based design with smart retiming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1