{"title":"An approach based on TSA-tree for accurate time series classification","authors":"Xiaoxu He, C. Shao","doi":"10.1109/CCIS.2012.6664321","DOIUrl":null,"url":null,"abstract":"In order to improve the performance of time series classification, we introduce a new approach of time series classification. The first step of the approach is to design a feature exaction model based on Trend and Surprise Abstraction tree (TSA-tree). The second step of the approach is to combine the exacted global feature and 1 nearest neighbor to classify time series. The proposed approach is compared with a number of known classifiers by experiments in artificial and real-world data sets. The experimental results show it can reduce the error rates of time series classification, so it is highly competitive with previous approaches.","PeriodicalId":392558,"journal":{"name":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2012.6664321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to improve the performance of time series classification, we introduce a new approach of time series classification. The first step of the approach is to design a feature exaction model based on Trend and Surprise Abstraction tree (TSA-tree). The second step of the approach is to combine the exacted global feature and 1 nearest neighbor to classify time series. The proposed approach is compared with a number of known classifiers by experiments in artificial and real-world data sets. The experimental results show it can reduce the error rates of time series classification, so it is highly competitive with previous approaches.