On Shannon capacity and causal estimation

Rahul Kidambi, Sreeram Kannan
{"title":"On Shannon capacity and causal estimation","authors":"Rahul Kidambi, Sreeram Kannan","doi":"10.1109/ALLERTON.2015.7447115","DOIUrl":null,"url":null,"abstract":"The problem of estimating causal relationships from purely observational data is studied in this paper. We observe samples from a pair of random variables (X,Y) and wish to estimate whether X causes Y or Y causes X. Any joint distribution can be factored as p<sub>X,Y</sub> = p<sub>X</sub> p<sub>Y|X</sub> = p<sub>Y</sub> p<sub>X|Y</sub> and therefore the “causal” direction cannot be inferred from the joint distribution without further assumptions. In this paper, we propose and study the utility of Shannon capacity as a metric for causal directionality estimation. This opens up several open questions and directions for future study.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The problem of estimating causal relationships from purely observational data is studied in this paper. We observe samples from a pair of random variables (X,Y) and wish to estimate whether X causes Y or Y causes X. Any joint distribution can be factored as pX,Y = pX pY|X = pY pX|Y and therefore the “causal” direction cannot be inferred from the joint distribution without further assumptions. In this paper, we propose and study the utility of Shannon capacity as a metric for causal directionality estimation. This opens up several open questions and directions for future study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论香农能力与因果估计
本文研究了从纯观测数据估计因果关系的问题。我们从一对随机变量(X,Y)中观察样本,并希望估计是X导致Y还是Y导致X。任何联合分布都可以被分解为pX,Y = pX pY|X = pY pX|Y,因此,如果没有进一步的假设,就不能从联合分布中推断出“因果”方向。在本文中,我们提出并研究了香农容量作为因果方向性估计度量的效用。这为未来的研究开辟了几个开放的问题和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust temporal logic model predictive control Efficient replication of queued tasks for latency reduction in cloud systems Cut-set bound is loose for Gaussian relay networks Improving MIMO detection performance in presence of phase noise using norm difference criterion Utility fair RAT selection in multi-homed LTE/802.11 networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1