Panoramic Image Mosaics Using Local Wavelet-Features

Feng Guo, Y. Wang
{"title":"Panoramic Image Mosaics Using Local Wavelet-Features","authors":"Feng Guo, Y. Wang","doi":"10.1109/NBiS.2016.47","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient method based on local wavelet-features is proposed for Panoramic Image Mosaics. Wavelet can describe a wide variety of image characteristics and a key component for in image-related applications. For the feature-extraction stage, we exploit wavelet-subband statistics to construct local feature vectors for image-patch representation. Experimental results show that the local wavelet-features are able to produce plausible panoramic images.","PeriodicalId":390397,"journal":{"name":"2016 19th International Conference on Network-Based Information Systems (NBiS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 19th International Conference on Network-Based Information Systems (NBiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NBiS.2016.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, an efficient method based on local wavelet-features is proposed for Panoramic Image Mosaics. Wavelet can describe a wide variety of image characteristics and a key component for in image-related applications. For the feature-extraction stage, we exploit wavelet-subband statistics to construct local feature vectors for image-patch representation. Experimental results show that the local wavelet-features are able to produce plausible panoramic images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部小波特征的全景图像拼接
本文提出了一种基于局部小波特征的全景图像拼接方法。小波可以描述各种各样的图像特征,是图像相关应用的关键组成部分。在特征提取阶段,我们利用小波子带统计构造局部特征向量用于图像补丁表示。实验结果表明,局部小波特征能够产生可信的全景图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilingual Digital Signage Using iBeacon Communication Adaptive Focused Website Segment Crawler 3D Modeling of Reconstruction Plan at Sanriku Coast for Great East Japan Earthquake: Visualization of the Reconstruction Plan for Effective Information Sharing Two-Stage Centroid Localization for Wireless Sensor Networks Using Received Signal Strength Control of Envelope Pulse through Nonlinear and Dispersive Medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1