Neural Mask based Multi-channel Convolutional Beamforming for Joint Dereverberation, Echo Cancellation and Denoising

Jianming Liu, Meng Yu, Yong Xu, Chao Weng, Shi-Xiong Zhang, Lianwu Chen, Dong Yu
{"title":"Neural Mask based Multi-channel Convolutional Beamforming for Joint Dereverberation, Echo Cancellation and Denoising","authors":"Jianming Liu, Meng Yu, Yong Xu, Chao Weng, Shi-Xiong Zhang, Lianwu Chen, Dong Yu","doi":"10.1109/SLT48900.2021.9383519","DOIUrl":null,"url":null,"abstract":"This paper proposes a new joint optimization framework for simultaneous dereverberation, acoustic echo cancellation, and denoising, which is motivated by the recently proposed con-volutional beamformer for simultaneous denoising and dereverberation. Using the echo aware mask based beamforming framework, the proposed algorithm could effectively deal with double-talk case and local inference, etc. The evaluations based on ERLE for echo only, and PESQ for double-talk demonstrate that the proposed algorithm could significantly improve the performance.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a new joint optimization framework for simultaneous dereverberation, acoustic echo cancellation, and denoising, which is motivated by the recently proposed con-volutional beamformer for simultaneous denoising and dereverberation. Using the echo aware mask based beamforming framework, the proposed algorithm could effectively deal with double-talk case and local inference, etc. The evaluations based on ERLE for echo only, and PESQ for double-talk demonstrate that the proposed algorithm could significantly improve the performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经掩模的多通道卷积波束形成联合去噪、回波抵消和去噪
本文提出了一种新的同时去噪、回声消除和去噪的联合优化框架,该框架是由最近提出的同时去噪和去噪的卷积波束形成器驱动的。该算法采用基于回波感知掩模的波束形成框架,能够有效地处理双话情况和局部推理等问题。基于ERLE和PESQ的双通测试结果表明,该算法可以显著提高系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Through the Words of Viewers: Using Comment-Content Entangled Network for Humor Impression Recognition Analysis of Multimodal Features for Speaking Proficiency Scoring in an Interview Dialogue Convolution-Based Attention Model With Positional Encoding For Streaming Speech Recognition On Embedded Devices Two-Stage Augmentation and Adaptive CTC Fusion for Improved Robustness of Multi-Stream end-to-end ASR Speaker-Independent Visual Speech Recognition with the Inception V3 Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1